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1 Introduction

In this note I will present another method to solve real business cycle models or dynamic stochastic
general equilibrium models, called the method of undetermined coefficients. The method is devel-
oped by King et al. (2002) and Uhlig (1997). Uhlig has many papers on this method and nice codes
to implement the method easily. Please visit his web page for more information on the method.
This note is basically the summary of Uhlig (1997).

The method is similar to the method by Blanchard and Kahn (1980) in the sense that the method
crucially depends on linearizing the equations that characterize the solution. In this sense, both
methods are categorized as the linearizing euler equation method. Moreover, both methods are
local method. The (potentially) non-linear equations that characterize the solution of the model are
linearized around some state, most likely the steady state of the model. Remember that the ap-
proximation is valid only around the steady state. Besides, the methods necessarily imply certainty
equivalence.

We are going to use the standard RBC model with indivisible labor by Hansen (1985). The rep-
resentative consumer makes consumption-savings choice as well as labor-leisure choice each period.
First, we solve the model using the baby version of the solution method, which helps understanding
the basic concept of the solution method. Then we show the general formulation.

2 The Standard RBC Model

Let’s start by describing the social planner’s problem in the economy of Hansen (1985). Remember
that the solution to the social planner’s problem is equivalent to the allocation in the competitive
equilibrium of the economy where labor supply is indivisible (choice set of the individual labor
supply decision is {0, n}) but consumers can use a lottery to smooth out the indivisibility. For more
details about the lottery, see Rogerson (1988).

Problem 1 (Social planner’s problem of the standard RBC model: recursive formulation)

V (Z,K) = max
C,K′,N

{
u(C,N) + βEZ′|ZV (Z ′, K ′)

}
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subject to

C +K ′ = ZF (K,N) + (1− δ)K

lnZ ′ = (1− ρ)Z + ρ lnZ + ϵ′ ϵ′ ∼ iidN(0, σ2
ϵ )

C ≥ 0

K ′ ≥ 0

N ∈ [0, 1]

As usual, prime denotes a variable in the next period. Following Hansen (1985), let’s assume:

u(C,N) = log(C)− µN

Y = ZKθN1−θ

3 The Procedure

You need to take the following steps. The remaining part of the note explains the procedure to the
details step by step.

1. Find the system of (potentially non-linear) equations that characterize the solution of the
model.

2. Find the steady state of the model.

3. Approximate the non-linear equations around the steady state, using 1st order Taylor approx-
imation.

4. Fit the system of equations into some matrix representation. Since the representation is closely
related to the solution method, the matrix representation differs for each solution method.

5. Derive the optimal decision rules (linear functions from the state variables to the control
variables) and the laws of motion for endogenous state variables (linear function from the
state variables to the endogenous state variables in the next period). Once the system of
equations is fit into the matrix representation associated with the method of undetermined
coefficients, the solution is automatically obtained (solution method doesn’t depend on the
characteristics of the model).

4 Characterizing the Solution

The solution of the social planner’s problem can include, most importantly, the first order conditions
(including the Euler equation), and laws of motion for state variables. Other equations might be
included depending on the state and control variables chosen. In general, if we have k exogenous
state variables, m endogenous state variables, and n control (jump) variables, we have k + n +m
equations or more.
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In the current example, we choose k = 1 (Z), m = 1 (K), and n = 5 (C, N , Y , R, and I).
Obviously, there is a degree of freedom in how to choose the control variables.

For our current examples, the following system of equations characterize the solution to the social
planner’s problem:

µ = C−σ(1− θ)
Y

N

C−σ = βE[C ′−σR′]

R = θ
Y

K
+ 1− δ

Y = ZKθN1−θ

K ′ = I + (1− δ)K

Y = C + I

lnZ ′ = (1− ρ) lnZ + ρ lnZ + ϵ′

5 Finding Steady State

I will skip the details. For more details, please see the lecture note for Blanchard-Kahn method.
The key of this step is to assume that Z stays at its unconditional mean (Z = Z ′ = Z). With this
assumption, we can solve for the steady state values of all the other variables (K, N , Y , C, R, and
I)

6 Log-linearization

Again I skip the details. For details, please see the lecture note for Blanchard-Kahn method.
Basically, what you do in this step is to apply 1st order Taylor expansion around the steady state
to all the non-linear equations so that all the equations become linear in state and control variables.

It sounds tedious, but practically, you only need to apply the following rules to log-linearize the
equations.

X = Xex ≃ X(1 + x)

xy ≃ 0

where X is the original variable, X is its steady state value, and x represents the percentage
deviation from the steady state value. y is a deviation variable for another variable Y .

If we apply the rules to log-linearize to the system of equations for our current model, we obtain
the following system of log-linearized equations (verify yourself):
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0 = −σc+ y − n (1)

0 = E[σc− σc′ + r′] (2)

Rr = θ
Y

K
(y − k) (3)

y = z + θk + (1− θ)n (4)

Kk′ = Ii+ (1− δ)Kk (5)

Y y = Ii+ Cc (6)

z′ = ρz + ϵ′ (7)

7 Simple Method of Undetermined Coefficients

Before presenting the formal matrix representation of the method and showing the general method
to solve the model, let us take a simpler approach, to understand the essence of the method. The
formal solution method is just a generalization of what is presented in this section.

Currently, we have the seven linear equations: (1), (2), (3), (4), (5), (6), and (7). First of all, try
to minimize the number of equations by substituting out some variables. In particular, we can use
the equations (1), (3), (4) and (6) to substitute out y, i, c and r from the system. Now we have:

0 = E[(z + θk − θn)− (z′ + θk′ − θn′) + θ
Y

KR
(z′ + (θ − 1)k′ + (1− θ)n′)] (8)

Kk′ = Y (z + θk + (1− θ)n)− C

σ
(z + θk − θn) + (1− δ)Kk (9)

z′ = ρz + ϵ′ (10)

Notice that this is the minimum number of equations which characterize the solution, since we have
one exogenous state variable z, one endogenous state variable k, and two control variables (k′ and
n), one of which is a endogenous state variable.

To ease the notation, express the equations above by the followings:

0 = E[k′ + ϕ1k + ϕ2n
′ + ϕ3n+ ϕ4z

′ + ϕ5z] (11)

0 = k′ + η1k + η2n+ η3z (12)

z′ = ρz + ϵ′ (13)

Now, we postulate (correctly) that the optimal decision rule for k and n are linear in state variables
(k and z). Specifically, let’s assume that following functional forms:

k′ = ψ1k + ψ2z (14)

n = ψ3k + ψ4z (15)

Now our goal is to find {ψ1, ψ2, ψ3, ψ4} which are consistent with (11), (12), and (13). Let’s plug
in (13), (14), and (15) into (11) and (12) so that the resulting two equations contain only z and k.
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We obtain the followings:

0 = E[(ψ1 + ϕ1 + ϕ2ψ3ψ1 + ϕ3ψ3)k + (ψ2 + ϕ2ψ3ψ2 + ϕ2ψ4ρ+ ϕ3ψ4 + ϕ4ρ+ ϕ5)z + (ϕ2ψ4 + ϕ4)ϵ
′]

(16)

0 = (ψ1 + η1 + η2ψ3)k + (ψ2 + η2ψ4 + η3)z (17)

Notice that E[ϵ′] = 0. Therefore, the first equation becomes:

0 = (ψ1 + ϕ1 + ϕ2ψ3ψ1 + ϕ3ψ3)k + (ψ2 + ϕ2ψ3ψ2 + ϕ2ψ4ρ+ ϕ3ψ4 + ϕ4ρ+ ϕ5)z (18)

Since both (18) and (17) have to be satisfied for all k and z, we get the following system of four
equations, which characterize the four coefficients:

0 = ψ1 + ϕ1 + ϕ2ψ3ψ1 + ϕ3ψ3 (19)

0 = ψ2 + ϕ2ψ3ψ2 + ϕ2ψ4ρ+ ϕ3ψ4 + ϕ4ρ+ ϕ5 (20)

0 = ψ1 + η1 + η2ψ3 (21)

0 = ψ2 + η2ψ4 + η3 (22)

Notice that (19) and (21) contain only ψ1 and ψ3. Solve (21) for ψ3 and plugging into (19), and we
get:

0 = ψ1 + ϕ1 + ϕ2

(
− 1

η2
ψ1 −

η1
η2

)
ψ1 + ϕ3

(
− 1

η2
ψ1 −

η1
η2

)
Equivalently:

ψ2
1 +

(
η1 −

η2
ϕ2

+
ϕ3

ϕ2

)
ψ1 +

(
ϕ3η1
ϕ2

− η2ϕ1

ϕ2

)
= 0

This is a normal quadratic equation. Solve it. Notice (it’s a bit tedious though) that the product
of two roots is:

ϕ3η1
ϕ2

− η2ϕ1

ϕ2

= R =
1

β

Since we are interested in the stable solution, take the root inside the unit circle. Once ψ1 is
obtained, ψ3 can be computed from (21). Combining the remaining two equations, we can solve for
ψ2 and ψ4. Specifically, we can obtain:

ψ4 =
ρϕ1 + ϕ5 + η3 + η3ψ3ϕ2

η2 + η2ϕ2ψ3 − ρϕ2 − ϕ3

and

ψ2 = −η2ψ4 − η3
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8 General Solution Method: Fitting into the Matrix Representation

The general solution method using the undetermined coefficients is presented. Basically it is a
generalization of the method in the previous section. First of all, fit the system of linearized
equations into the following matrix representation:

0 = Ax′ +Bx+ Cy +Dz (23)

0 = E[Fx′′ +Gx′ +Hx+ Jy′ +Ky + Lz′ +Mz] (24)

z′ = Nz + ϵ′ E[ϵ′] = 0 (25)

where x is a vector of endogenous state variables (size m×1), y is a vector of control variables (size
n × 1), z is a vector of exogenous state variables (size k × 1). ϵ′ is a vector of shocks (size k × 1).
C is of size n× n. F is of size m×m, and N has only stable eigenvalues.1

The optimal decision rules can be expressed as follows:

x′ = Px+Qz (26)

y = Rx+ Sz (27)

9 General Solution Method: Solving the Matrix Equations

As we did for the simple case, let’s substitute out x′, x′′, y, y′, and z′ using (26), (27), and (25).
Then the equations (23) and (24) become the followings:

0 = A(Px+Qz) +Bx+ C(Rx+ Sz) +Dz (28)

0 = E[F (P (Px+Qz) +Q(Nz + ϵ′)) +G(Px+Qz) +Hx+

J(R(Px + Qz) + S(Nz + ϵ′)) +K(Rx + Sz) + L(Nz + ϵ′) +Mz] (29)

Collecting terms and using E[ϵ′] = 0:

0 = (AP +B + CR)x+ (AQ+ CS +D)z (30)

0 = (FP 2 +GP +H + JRP +KR)x+ (FPQ+ FQN +GQ+ JRQ+ JSN +KS + LN +M)z
(31)

Since the two equations have to be satisfied for any x and z:

0 = AP +B + CR (32)

0 = AQ+ CS +D (33)

0 = FP 2 +GP +H + JRP +KR (34)

0 = FPQ+ FQN +GQ+ JRQ+ JSN +KS + LN +M (35)

Notice (32) and (34) contain only P and R. Solve (32) for R and substitute into (34) and we obtain:

FP 2 +GP +H + J(−C−1AP − C−1B)P +K(−C−1AP − C−1B) = 0

1Solution method for more general case (where the number of equations in (23) is larger than n) can be found in
Uhlig (1997).
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Collecting terms:

(F − JC−1A)P 2 − (JC−1B +KC−1A−G)P − (KC−1B −H) = 0 (36)

To simplify the notation, let’s express (36) as follows:

ΨP 2 − ΓP −Θ = 0 (37)

This is a matrix quadratic equation of P . There are many ways to solve the equation in general, but
an often-used method is to use the generalized eigenvalue problem (also called the QZ decomposi-
tion). One of the attractive features for the method is that the method does not require invertibility
of Ψ matrix.

In general, suppose we have two matrices of the same size X and Y . The generalized eigenvalue
problem is to find the generalized eigenvalues λi and generalized eigenvectors di satisfying:

Xdi = λiY di

If we use Y = I, we go back to the standard eigenvalue problem.

How do we apply the generalized eigenvalue problem to our matrix quadratic equation? Let’s define
the following two matrices:

Ξ =

(
Γ Θ
Im 0m

)

∆ =

(
Ψ 0m
0m Im

)
where Im represents the identity matrix of size m ×m and 0m represents the m ×m matrix with
only zero entries. Since both Γ and Ψ are m ×m matrices, both Ξ and ∆ are 2m × 2m matrices.
Now, apply the generalized eigenvalue problem to the pair of matrices.(

Γ Θ
Im 0m

)(
di,1
di,2

)
= λi

(
Ψ 0m
0m Im

)(
di,1
di,2

)
If we separate the top and bottom half of the equation, we get:

Γdi,1 +Θdi,2 = λiΨdi,1

di,1 = λidi,2

The second equation can be used to substitute out di,1. Now we have only one equation (To clean
up the notation, let’s redefine di = di,2):

Γλidi +Θdi = λiΨλidi (38)

Suppose we can find m eigenvalues corresponding m linearly independent eigenvectors. Then we
have the counterpart of Blanchard-Kahn condition.

Problem 2
If all of the m eigenvalues are inside the unit circle (i.e., maxi |λi| < 1), the solution is stable.
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Suppose the condition is satisfied. We can combine (38) for all i as follows:

ΨΩΛ2 − ΓΩΛ−ΘΩ = 0 (39)

where Ω is m × m matrix which contains all the eigenvectors in each column, and Λ is m × m
diagonal matrix with m eigenvalues. Specifically:

Ω =
[
d1 d2 . . . dm

]
(40)

Λ =


λ1 0 0 0
0 λ2 0 0

0 0
. . . 0

0 0 0 λm

 (41)

Multiply (39) by Ω−1 from the right, and we get:

ΨΩΛ2Ω−1 − ΓΩΛΩ−1 −Θ = 0 (42)

Compare (42) with (37). The equation (42) implies that P = ΩΛΩ−1. In sum, once we implement
the generalized eigenvalue decomposition with respect to Ξ and ∆, we basically got P .

Once P is obtained, (32) is used to obtain R as

R = −C−1(AP +B) (43)

The remaining two equations, (33) and (35), contains Q and S. Solve (33) for S and we get:

S = −C−1(AQ+D) (44)

Plugging into (35), and we get:

(FP +G+ JR−KC−1A)Q+ (F − JC−1A)QN − JC−1DN −KC−1D + LN +M = 0 (45)

The equation contains only Q as unknown, but it’s not trivial as Q is sandwiched in some terms.
In this case, we can use the vectorization. The following is useful:

vec(AXB) = (BT ⊗ A)vec(X)

where ⊗ denotes the Kronecker product of the two matrices. Apply vectorization to (45) and we
get:

vec(Q) = (I⊗(FP+G+JR−KC−1A)+(NT⊗(F−JC−1A)))−1vec(JC−1DN+KC−1D−LN−M)

(46)

Once Q is obtained, we can use (44) to compute S.
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