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1 Motivation

Remember how the trapezoid rule and Simpson’s rule look like. With N points, trapezoid rule and
the Simpson’s rule approximate the integral by the following formula (let h = (x−x)

(N−1)
)∫ x

x

f(x)dx ≃
(
h

2
f(x1) + hf(x2) + hf(x3) + hf(x4) + ...+ hf(xN−1) +

h

2
f(xN)

)
∫ x

x

f(x)dx ≃
(
h

3
f(x1) +

4h

3
f(x2) +

2h

3
f(x3) +

4h

3
f(x4) + ...+

4h

3
f(xN−1) +

h

3
f(xN)

)
Notice that both formula can be rewritten as:∫ x

x

f(x)dx ≃
N∑
i=1

ωif(xi)

For some {ωi}Ni=1.

In other words, both of the Newton-Coates quadrature formula approximate the integral with 2N
parameters, which consists of N points and N weights to each point.

Newton-Coates quadratures set a simple rule for the choice of the grid points (set points so that the
entire interval is separated into equally-distanced subintervals) and concentrate on the choice of the
weights to each point. Actually, as we have seen with Romberg Integration, using equally-spaced
grid points helps using higher order approximation or adaptive procedure easily.

Instead, Gaussian quadrature is trying to choose all of 2N parameters, such that the approximation
of the integral is ”good” using certain criteria. The question is ”how do we define the goodness?”

Suppose we use polynomial approximation of f(x) function. Since we have 2N parameters to pinned
down, if we use a polynomial of degree 2N − 1, all the parameters can be exactly pinned down.

In other words, if the true f(x) function is a polynomial order less or equal to 2N − 1, the integral
using polynomial approximation will give exact value of the integral. Formally, if f(x) is a polyno-
mial of order less than or equal to 2N − 1, we can find {xi}Ni=1 and {ωi}Ni=1 such that the following
always holds:∫ 1

−1

f(x)dx =
N∑
i=1

ωif(xi)

This is the measure of ”goodness” used for Gaussian quadrature. If a Gaussian quadrature method
is used, an integral of f(x) over some interval (let’s use [−1, 1] without loss of generality), can be
exactly obtained if f(x) is a polynomial of order less than or equal to 2N − 1. If the order of f(x)
is higher, the Gaussian quadrature gives an approximation of the true integral.
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2 Gauss-Legendre Quadrature

Let’s start by stating a theorem.

Theorem 1 (Gauss-Legendre Quadrature)
Suppose {xi}Ni=1 are the roots of order N Legendre polynomial PN(x). Define {ωi}Ni=1 such that:

ωi =

∫ 1

−1

N∏
j=1

j ̸=i

x− xj

xi − xj

dx

If f(x) is a polynomial of degree equal to or less than 2N − 1, then the following equation holds:∫ 1

−1

f(x)dx =
N∑
i=1

ωif(xi)

First of all, the following result is helpful in proving the theorem:

Proposition 1 (Lagrange Interpolation Formula)
Suppose we want to approximate a function f(x) by a polynomial f̃(x). Suppose we have {xi}Ni=1

and {f(xi)}Ni=1. (This type of data is called Lagrange data). Since we have N conditions to identify
f̃(x), we can construct f̃(x) which is identical to f(x) if f(x) is a polynomial of order equal to or
less than N − 1. In particular, we can construct such f̃(x) as follows:

f̃(x) =
N∑
i=1

∫ 1

−1

N∏
j=1

j ̸=i

x− xj

xi − xj

f(xi)

Also remember that Legendre polynomial is a family of orthogonal polynomials, defined over [−1, 1],
with a trivial weighting function w(x) = 1. Now let’s prove.

Proof 1 (Gauss-Legendre Quadrature)
1. In case f(x) is a polynomial of order equal or less than N − 1. Construct {xi}Ni=1 such that

they are the N roots of PN(x). Use the Lagrange interpolation formula to construct f̃(x).
Then:

∫ 1

−1

f(x)dx =

∫ 1

−1

 N∑
i=1

N∏
j=1

j ̸=i

x− xj

xi − xj

f(xi)

 dx

=
N∑
i=1

∫ 1

−1

N∏
j=1

j ̸=i

x− xj

xi − xj

f(xi)

 dx

=
N∑
i=1

ωif(xi)

This implies that if {ωi}Ni=1 are chosen in a way specified in the theorem, the integral of f(x)
can be exactly obtained by the formula in the theorem.
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2. Now, consider the case when f(x) is a polynomial of order higher than N − 1 but equal to or
less than 2N − 1. First, if we divide f(x) by PN(x) (which is a polynomial of order equal to
or less than f(x)), we can obtain the following:

f(x) = PN(x)Q(x) +R(x)

where both Q(x) and R(x) are polynomials f order equal to or less than N − 1. Using this:∫ 1

−1

f(x)dx =

∫ 1

−1

PN(x)Q(x) +R(x)dx

=

∫ 1

−1

PN(x)Q(x)dx+

∫ 1

−1

R(x)dx

Remember that PN(x) is a Legendre orthogonal, whose weighting function is w(x) = 1. In
addition, Q(x) can be represented by linear combination of the Legendre polynomials up to
order N−1. Since orthogonality implies that the product of each of such Legendre polynomials
and PN(x) integrates to zero, we get the following:∫ 1

−1

PN(x)Q(x)dx = 0

On the other hand, remember that R(x) is a polynomial of order equal to or less than N − 1.
Using the previous result (case 1), we know that the integral of R(x) can be exactly represented,
using N roots of PN(x) as {xi}Ni=1, as follows:∫ 1

−1

R(x)dx =
N∑
i=1

ωiR(xi)

Next, remember how we obtain Q(x) and R(x). They satisfy:

f(x) = PN(x)Q(x) +R(x)

Remember we choose {xi}Ni=1 such that they are the N roots of PN(x), therefore, for i =
1, 2, ..., N :

f(xi) = PN(xi)Q(xi) +R(xi) = R(xi)
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Combining all we got above, we get:∫ 1

−1

f(x)dx =

∫ 1

−1

PN(x)Q(x) +R(x)dx

=

∫ 1

−1

PN(x)Q(x)dx+

∫ 1

−1

R(x)dx

=

∫ 1

−1

R(x)dx

=
N∑
i=1

ωiR(xi)

=
N∑
i=1

ωif(xi)

This completes the proof.

3 Change of Variables

So far, we have ignored the fact that we usually want to integrate f(x) over [x, x], not over [−1, 1].
We have been using [−1, 1] because it’s easy to relate to Legendre polynomials. However, as you
can imagine, it’s easy to convert the variables so that we can integrate f(x) over [x, x]. Let’s see
how.

Denote z is a point on [−1, 1] and x is a point on [x, x]. Consider a simple mapping from [−1, 1] to
[x, x] as follows:

gz(x) = z =
2x− x− x

x− x

It’s equivalent to:

gx(z) = x =
1

2
[(x− x)z + x+ x]

Notice:

d gx(z)

dz
=

x− x

2

Using this, Gauss-Legendre quadrature formula can be rewritten as follows:∫ x

x

f(x)dx =

∫ 1

−1

f(gx(z))
d gx(z)

dz
dz

=

∫ 1

−1

f

(
(x− x)z + x+ x

2

)
x− x

2
dz

=
x− x

2

N∑
i=1

ωif(gx(zi))
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where {zi}Ni=1 and {ωi}Ni=1 are constructed in the same way as the theorem states.

Now let’s summarize:

Algorithm 1 (Gauss-Legendre Quadrature)
1. Suppose we want to approximate numerically:∫ x

x

f(x) dx

2. Choose N . It implies that Legendre polynomial of order N−1 is going to be used to approximate
f(x).

3. Compute N roots of order N Legendre polynomial PN(z). Denote them as {zi}Ni=1. Actually,
you should be able to get the roots of Legendre polynomials from any books on numerical
methods.

4. Construct {xi}Ni=1 using:

xi =
(x− x)zi + x+ x

2

5. Obtain {ωi}Ni=1 using:

ωi =

∫ 1

−1

N∏
j=1

j ̸=i

x− xj

xi − xj

dx

Actually it’s not easy compute ωi but you can find the values in any books on numerical
methods.

6. The approximated integral can be computed by:∫ x

x

f(x)dx ≃ x− x

2

N∑
i=1

ωif(xi)

Remember that, if f(x) is a polynomial of order equal to or less than 2N − 1, this formula
gives the exact value of the integral.

4 Gauss-Chebyshev Quadrature

We studied Gauss-Legendre quadrature, because the weighting function associated with Legendre
polynomials is a trivial one. But the method can be extended to any family of orthogonal polyno-
mials.

Let’s extend our result to Chebyshev polynomials:
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Theorem 2 (Gauss-Chebyshev Quadrature)
Suppose {xi}Ni=1 are the roots of order N Chebyshev polynomial PN(x). Define {ωi}Ni=1 such that:

ωi =

∫ 1

−1

N∏
j=1

j ̸=i

x− xj

xi − xj

1√
1− x2

dx =
π

N

If f(x) is a polynomial of degree equal to or less than 2N − 1, then the following equation holds:∫ 1

−1

f(x)
1√

1− x2
dx =

N∑
i=1

ωif(xi)

A couple of comments below:

1. A great thing about Chebyshev is that the weights and grid points are really simple.

2. Weights are actually constant! Weights are:

ωi =
π

N

3. Roots can be computed by the following formula:

xi = − cos

(
2i− 1

2N
π

)
4. We can use the same trick to convert the domain from [−1, 1] to [x, x].

5. There is another problem. Chebyshev has nontrivial weighting function, which most of the
times we do not want. But we can solve this problem by redefining the integrand by multi-
plying the inverse of the weighting function.

Taking into account the remarks above, the algorithm looks like the following:

Algorithm 2 (Generalized Gauss-Chebyshev Quadrature)
1. Suppose we want to approximate numerically:∫ x

x

f(x) dx

2. Choose N . It implies that Chebyshev polynomial of order N − 1 is going to be used to approx-
imate f(x).

3. Compute N roots of order N Chebyshev polynomial PN(z). Denote them as {zi}Ni=1. There is
an easy formula to compute them:

zi = − cos

(
2i− 1

2N
π

)
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4. Construct {xi}Ni=1 using:

xi =
(x− x)zi + x+ x

2

5. Set {ωi}Ni=1 as follows:

ωi =
π

N
∀i

6. The approximated integral can be computed by:∫ x

x

f(x)dx ≃ x− x

2

N∑
i=1

ωif(xi)
√

1− z2i

Remember that, if f(x) is a polynomial of order equal to or less than 2N − 1, this formula
gives the exact value of the integral.

5 Gauss-Hermite Quadrature

Theorem 3 (Gauss-Hermite Quadrature)
Suppose {xi}Ni=1 are the roots of order N Hermite polynomial PN(x). Define {ωi}Ni=1 such that:

ωi =

∫ ∞

−∞

N∏
j=1

j ̸=i

x− xj

xi − xj

e−x2

dx

If f(x) is a polynomial of degree equal to or less than 2N − 1, then the following equation holds:∫ ∞

−∞
f(x) e−x2

dx =
N∑
i=1

ωif(xi)

The shape of the weighting function associated with Hermite polynomials motivate the numerical
integration using normal distribution as weighting function.

In particular, consider an expectation of f(z) where z is distributed as N(µ, σ2). What we want to
compute is:

(2πσ2)−
1
2

∫ ∞

−∞
f(z) e

−
(

z−µ√
2σ

)2

dz

First of all, define x as:

x =
z − µ√

2σ

Equivalently:

z =
√
2σx+ µ
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Replace z with x in the integration, and we get:

(2πσ2)−
1
2

∫ ∞

−∞
f(z) e

−
(

z−µ√
2σ

)2

dz = (2πσ2)−
1
2

∫ ∞

−∞
f(
√
2σx+ µ) e−x2 √

2σ dx

=
√
2σ(2πσ2)−

1
2

∫ ∞

−∞
f(
√
2σx+ µ) e−x2

dx

=
1√
π

∫ ∞

−∞
f(
√
2σx+ µ) e−x2

dx

Using the theorem, we can obtain:

(2πσ2)−
1
2

∫ ∞

−∞
f(z) e

−
(

z−µ√
2σ

)2

dz =
1√
π

N∑
i=1

ωif(
√
2σxi + µ)

where {xi}Ni=1 and {ωi}Ni=1 are described in the theorem.

Let’s summarize:

Algorithm 3 (Gauss-Hermite Quadrature associated with Normal Distribution)
1. Suppose we want to approximate numerically an expectation of f(z), where z is distributed by

N(µ, σ2). In other words, we want to compute:

Ezf(z) = (2πσ2)−
1
2

∫ ∞

−∞
f(z) e

−
(

z−µ√
2σ

)2

dz

2. Choose N . It implies that Hermite polynomial of order N−1 is going to be used to approximate
f(z).

3. Compute N roots of order N Hermite polynomial PN(x). Denote them as {xi}Ni=1. Since there
is no simple formula for the roots, the easiest way is to find in a book on numerical methods.

4. Construct {zi}Ni=1 using:

zi =
√
2σxi + µ

5. Set {ωi}Ni=1 as follows:

ωi =

∫ ∞

−∞

N∏
j=1

j ̸=i

x− xj

xi − xj

e−x2

dx

Again, the simplest way to obtain {ωi}Ni=1 is to find in a book.

6. The approximated integral can be computed by:

Ezf(z) = (2 piσ2)−
1
2

∫ ∞

−∞
f(z) e

−
(

z−µ√
2σ

)2

dz =
1√
π

N∑
i=1

ωif(zi)

Remember that, if f(z) is a polynomial of order equal to or less than 2N − 1, this formula
gives the exact value of the integral.
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A comment below:

1. Good example of how to use the Gauss-Hermite quadrature is given in Judd (pp262-263). In
the model the quadrature method is used to compute the expected value of an investor when
the return of assets follow normal distributions.

6 Gauss-Laguerre Quadrature

I am going to state only the theorem. Judd (pp263-264) exhibits an example where Gauss-Laguerre
quadrature is useful.

Theorem 4 (Gauss-Laguerre Quadrature)
Suppose {xi}Ni=1 are the roots of order N Laguerre polynomial PN(x). Define {ωi}Ni=1 such that:

ωi =

∫ ∞

0

N∏
j=1

j ̸=i

x− xj

xi − xj

e−x dx

If f(x) is a polynomial of degree equal to or less than 2N − 1, then the following equation holds:∫ ∞

0

f(x) e−x dx =
N∑
i=1

ωif(xi)
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