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1 Introduction

In this note, I will present methods to approximate AR(1) process using first order Markov process.
Among many methods, I will present only the methods which do not explicitly rely on the numerical
integration. I will start with the method developed by Tauchen (1986), which is widely used in
various economic models. Then I will show an improvement of the method, proposed in Adda and
Cooper (2003).

As a preparation, I will start with an approximation of an iid normal shock. The two methods
used to approximate an iid normal shock correspond to the two methods that I will show for the
approximation of AR(1) process.

For methods explicitly based on numerical integration, including the method proposed by Tauchen
and Hussey (1991), please see the separate note.

2 iid Normal Shock: A Motivating Example

In many applications in economics, there are iid normal shocks. Below is an example used in macro.

Problem 1 (Consumption-Savings Decision with iid Normal Shock to Labor Income)

V (z, a) = max
c≥0,a′≥a

{u(c) + βEV (z′, a′)}

subject to

a(1 + r) + wez = a′ + c

z′ ∼ iidN(0, σ2
z)

r and w are given

It is easy to solve the problem using discretized state space method or finite element approximation
of the value function, once the iid normal shock to labor income is approximated by a discrete
shock. That’s what we want to do. Let me first of all specify our problem:

Problem 2 (Approximation of normal distribution)
We want to approximate N(µ, σ2

z) with {zi}ni=1 and {pi}ni=1 where pi is the probability that zi realizes.

3 Approximating iid Normal Shock: Simple method

Below is the algorithm:
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Algorithm 1 (Simple Method to Approximate iid Normal Shock)
1. Set n, which is the number of potential realizations of z.

2. Set the upperbound z and the lowerbound z to the support of z. Considering the symmetry of
the normal distribution around µ, a natural way to set the bounds is to choose λ such that:

z = µ+ λσz

z = µ− λσz

3. Set {zi}ni=1 such that, z1 = z, zn = z, and all of {zi}ni=1 are equally distanced. In other words,
for i = 1, 2, ..., n:

zi = z +
z − z

n− 1
(i− 1) = z +

2λσz

n− 1
(i− 1)

4. Construct the midpoints {mi}n−1
i=1 . mi is constructed as follows:

mi =
zi+1 + zi

2

5. Denote the cumulative density function (CDF) of the normal distribution with mean 0 and
variance 1 as Φ(.). For i = 2, 3, ..., n − 1, pi (probability assigned to zi) can be computed as
follows:

pi = Φ

(
mi − µ

σz

)
− Φ

(
mi−1 − µ

σz

)
In other words, the probability that zi is realized is defined as the probability that a draw from
the normal distribution falls into the interval [mi−1,mi], which is constructed around zi. For
the two endpoints, we have to take care of the fact that we cut both tails by putting finite
bounds to the support. Therefore:

p1 = Φ

(
m1 − µ

σz

)

pn = 1− Φ

(
mn−1 − µ

σz

)
Nice thing about the method is simplicity. Notice that you have a complete freedom in choosing
the number of abscissas (n) and the set of abscissas {zi}ni=1. Of course, in general, the larger n, the
better, but we usually cannot afford to use a high n. Regarding how to set {zi}ni=1, if we decide to
use equal-distance abscissas, the choice of {zi}ni=1 is replaced by the choice of λ. Still, λ is a free
parameter. Especially when n is small, be careful in how to choose λ. You can choose λ such that
certain property of the original distribution is replicated by the approximated distribution. For
example, we can choose λ such that the variance of the approximated process is the same as the
variance of the original process.
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4 Approximating iid Normal Shock: Adda and Cooper (2003)

The method proposed by Adda and Cooper (2003) is as follows. Basically it’s an improvement
over the simple method presented above. The key difference is that the method divides the original
support into n intervals in a way that the probability that a random draw falls into an interval is
1
n
for any internal. Let’s see the algorithm.

Algorithm 2 (Approximation of iid Normal Shock by Adda and Cooper (2003))
1. Set n, which is the number of potential realizations of z.

2. Denote the cumulative density function (CDF) of N(0, 1) as Φ(.). First of all, construct
{mi}n−1

i=1 such that the following is satisfied:

Φ

(
mi − µ

σz

)
=

i

n

3. Using the inverse function of Φ(.), mi can be explicitly defined as follows:

mi = Φ−1

(
i

n

)
σz + µ

4. The points {mi}n−1
i=1 define the intervals {Zi}ni=1. Specifically, interval Zi with i = 2, 3, ..., n−1

is characterized by Zi = [mi−1,mi]. The interval at the two ends (Z1 and Zn) are characterized
as Z1 = (−∞,m1] and Zn = [mn−1,∞).

5. Next step is to construct the abscissas {zi}ni=1. zi is chosen such that zi is the expected value
of the truncated normal distribution with interval Zi. Formally:

zi = E[z|z ∈ Zi]

Notice the formula for the expected value of the truncated normal distribution N(µ, σ2) is as
follows:

E[y|y ∈ [y, y]] = µ− σ
ϕ
(
y−µ
σ

)
− ϕ

(
y−µ

σ

)
Φ
(
y−µ
σ

)
− Φ

(
y−µ

σ

)
where Φ(.) and ϕ(.) are the CDF and PDF of N(0, 1). Applying the formula to the current
problem, zi can be computed as follows:

zi = E[z|z ∈ Zi]

= µ− σz

ϕ(mi−µ
σz

)− ϕ(mi−1−µ
σz

)

Φ(mi−µ
σz

)− Φ(mi−1−µ
σz

)

= µ− σzn

(
ϕ

(
mi − µ

σz

)
− ϕ

(
mi−1 − µ

σz

))
i = 2, 3, ..., n− 1

z1 = µ− σzn ϕ

(
m1 − µ

σz

)
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zn = µ+ σzn ϕ

(
mn−1 − µ

σz

)
We can directly apply the formula to compute {zi}ni=1, if we can compute CDF for normal
distribution.

6. Finally, obviously by construction:

pi =
1

n
∀i

Notice there is no degree of freedom with respect to this method, apart from the choice of n, and
the abscissas are generally not equally distanced. The method automatically puts more abscissas
to the neighborhood of the center of the distribution where the probability is higher.

5 AR(1) Shock: A Motivating Example

Now let’s look at the methods to approximate AR(1) process, using first order Markov chain. The
methods are direct extension of the methods to approximate iid normal shock that we have just
seen. We start by a motivating example.

Problem 3 (Consumption-Savings Decision with AR(1) Shock to Labor Income)

V (z, a) = max
c≥0,a′≥a

{
u(c) + βEz′|zV (z′, a′)

}
subject to

a(1 + r) + wez = a′ + c

z′ = (1− ρ)µ+ ρz + ϵ′ ϵ′ ∼ iidN(0, σ2
ϵ )

r and w are given

Problem 4 (Approximation of AR(1) process)
We want to approximate the following AR(1) process with {zi}ni=1 and {pij}n,ni=1,j=1 where pij is the
transition probability from state zi to state zj:

z′ = (1− ρ)µ+ ρz + ϵ′ ϵ′ ∼ iidN(0, σ2
ϵ )

6 Approximating AR(1) Shock: Tauchen (1986)

Below is the algorithm:

Algorithm 3 (Approximating AR(1) Shock: Tauchen (1986))
1. Set n, which is the number of potential realizations of z.

2. Notice that the stationary distribution of z is N(µ, σ2
z) where σz =

σϵ√
1−ρ2

.
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3. Set the upperbound z and the lowerbound z to the support of z. Considering the symmetry of
the normal distribution around µ, a natural way to set the bounds is to choose λ such that:

z = µ+ λσz

z = µ− λσz

4. Set {zi}ni=1 such that, z1 = z, zn = z, and all of {zi}ni=1 are equally distanced. In other words,
for i = 1, 2, ..., n:

zi = z +
z − z

n− 1
(i− 1) = z +

2λσz

n− 1
(i− 1)

5. Construct the midpoints {mi}n−1
i=1 . mi is constructed as follows:

mi =
zi+1 + zi

2

6. Let’s construct intervals {Zi}ni=1 as follows:

Z1 = (−∞,m1]

Zi = [mi,mi+1] i = 2, 3, ..., n− 1

Zn = [mn,∞)

7. We will approximate the transition probability pij as the probability that, conditional on zi,
z′ = (1− ρ)µ+ ρzi + ϵ′ falls into the interval j. pij can be easily computed as follows:

pij = Φ

(
mj − (1− ρ)µ− ρzi

σϵ

)
− Φ

(
mj−1 − (1− ρ)µ− ρzi

σϵ

)
j = 2, 3, ..., n− 1

pi1 = Φ

(
m1 − (1− ρ)µ− ρzi

σϵ

)
pin = 1− Φ

(
mn−1 − (1− ρ)µ− ρzi

σϵ

)
where Φ(.) is CDF of N(0, 1).

Nice thing about the method is simplicity. Notice that you have a complete freedom in choosing
the number of abscissas (n) and the set of abscissas {zi}ni=1. Of course, in general, the larger n, the
better, but we usually cannot afford to use a high n. Regarding how to set {zi}ni=1, if we decide
to use equally-distanced abscissas, the choice of {zi}ni=1 is replaced by the choice of λ. Still, λ is
a free parameter. How should we determine n and λ? There is no single answer. Tauchen (1986)
implements Monte Carlo experiments and finds that n = 9 and λ = 3 works really well even if
the original process has a very high persistence. Again, after choosing n such that n is the largest
number with which the computational time is bearable, λ can be pinned down such that some
statistics of the approximated process match the counterparts of the original process. For example,
if you are using a life-cycle economy, and trying to discretize the shocks to earnings, λ can be
chosen such that the life-cycle profile of variances of earnings, conditional on age, associated with
the discretized process replicates the life-cycle profile of earnings variance implied by the original
process.
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7 Approximating AR(1) Shock: Adda and Cooper (2003)

Algorithm 4 (Approximating AR(1) Shock: Adda and Cooper (2003))
1. Set n, which is the number of potential realizations of z.

2. Notice that the stationary distribution of z is N(µ, σ2
z) where σz =

σϵ√
1−ρ2

.

3. Denote the cumulative density function (CDF) of N(0, 1) as Φ(.). First of all, construct
{mi}n−1

i=1 such that the following is satisfied:

Φ

(
mi − µ

σz

)
=

i

n

4. Using inverse function of Φ(.), mi can be explicitly defined as follows:

mi = Φ−1

(
i

n

)
σz + µ

5. The points {mi}n−1
i=1 define the intervals {Zi}ni=1. Specifically, interval Zi with i = 2, 3, ..., n−1

is characterized by Zi = [mi−1,mi]. The interval at the two ends (Z1 and Zn) are characterized
as Z1 = (−∞,m1] and Zn = [mn−1,∞).

6. Next step is to construct the abscissas {zi}ni=1. zi is chosen such that zi is the expected value
of the truncated normal distribution with interval Zi. Formally:

zi = E[z|z ∈ Zi]

Notice the formula for the expected value of the truncated normal distribution N(µ, σ) is as
follows:

E[y|y ∈ [y, y]] = µ− σ
ϕ
(
y−µ
σ

)
− ϕ

(
y−µ

σ

)
Φ
(
y−µ
σ

)
− Φ

(
y−µ

σ

)
where Φ(.) and ϕ(.) are the CDF and PDF of N(0, 1), respectively. We can directly apply the
formula to compute {zi}ni=1, if we can compute both CDF and PDF of normal distribution.
Applying the formula to the current problem, zi can be computed as follows:

zi = E[z|z ∈ Zi]

= µ− σz

ϕ(mi−µ
σz

)− ϕ(mi−1−µ
σz

)

Φ(mi−µ
σz

)− Φ(mi−1−µ
σz

)

= µ− σzn

(
ϕ

(
mi − µ

σz

)
− ϕ

(
mi−1 − µ

σz

))
i = 2, 3, ..., n− 1

z1 = µ− σzn ϕ

(
m1 − µ

σz

)

zn = µ+ σzn ϕ

(
mn−1 − µ

σz

)
If you can compute PDF for normal distribution, it’s easy to compute zi.
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7. Finally, the transition probability can be computed as follows:

pij = prob(z′ ∈ Zj|z ∈ Zi)

=
prob(z ∈ Zi, z

′ ∈ Zj)

prob(z ∈ Zi)

= n prob(z ∈ Zi, z
′ ∈ Zj)

= n

∫ mi

mi−1

Prob(z′ ∈ Zj)ϕ

(
z − µ

σz

)
dz

= n

∫ mi

mi−1

[
Φ

(
mj − µ(1− ρ)− ρz

σz

)
− Φ

(
mj−1 − µ(1− ρ)− ρz

σz

)]
ϕ

(
z − µ

σz

)
dz

I omit the small modifications needed in cases i = 1, n or j = 1, n. Just be careful in these
cases. mi or mj cannot be defined but it’s easy to see how to modify the formula.

Integrant can be easily computed but there is no nice formula for the outside integration. Therefore,
we need to rely on a numerical integration method to compute pij.

Notice again that (i) there is no degree of freedom with respect to this method, apart from the
choice of n, and (ii) the abscissas are generally not equally distanced. The method automatically
puts more abscissas to the neighborhood of the center of the distribution where the probability is
higher.
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