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1 Introduction

We study the solution algorithm using value function iteration, and discretization of the state space.

2 Bellman Equation and Value Function Iteration

It is known that a solution to the following recursive problem is identical to a solution to the original
sequential formulation (Problem 1). It is called Bellman’s Principle of Optimality. For more formal
proof, see Stokey et al. (1989).

Problem 1 (Neoclassical Growth Model: Recursive Formulation)

V (K) = max
C,K′

{u(C) + βV (K ′)}

subject to

C +K ′ = zF (K, 1) + (1− δ)K

C ≥ 0

K ′ ≥ 0

where, as usual, a prime means the variable in the next period. If we define the Bellman operator
B(V) which updates a value function V using the Bellman equation above, we can show the following
properties (again, see Stokey et al. (1989) for a formal proof),

1. V ∗ such that B(V ∗) = V ∗ exists and is unique.

2. V ∗ = limt→∞Bt(V 0) for any continuous function V 0. In addition, Bt(V 0) converges to V ∗

monotonically.

In other words, if we supply an initial guess V 0 and keep applying the Bellman operator, we can
asymptotically get to the solution V ∗ of the Bellman equation. Value function iteration is the
solution method which uses the properties.

3 Discretization

However, there is a problem. The value function is defined over a continuous state space (space of
K), but computers cannot deal with that, unless the function can be represented by finite number
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of parameters. Therefore, we need to approximate the value function so that a computer can store
the approximated value function and thus we can implement value function iteration algorithm on
a computer.

The simplest way to approximate a function over a continuous domain is to represent the original
function as a finite set of points. Suppose V (K) is defined over [K,K]. We can set an integer nk

and put nk discrete points {K0, K1, K2, ..., Knk
} over [K,K]. With this discrete domain, the value

function can be represented at a set of nk points {Vi}nk
i=1, where Vi = V (Ki). This is definitely what

a computer can handle.

Remember that the choice of the agent in each period is the capital stock in the next period K ′

and thus chosen from the same set as K. Therefore, we can restrict the set of the choice to the set
of discrete points on K that we created.

Now we can construct an algorithm to solve the neoclassical growth model, using value function
iteration and discretization of the state space.

Algorithm 1 (Neoclassical Growth Model: Value Function Iteration and Discretization)
1. Set nk (number of grid points), K (lower bound of the state space), K (upper bound of the

state space), and ϵ (tolerance of error). nk is determined weighting the tradeoff between speed
and precision. K can be slightly higher than 0, as K = 0 is a steady state with 0 consumption
forever. K can be set slightly above the steady state level (which can be computed analytically),
assuming all we are interested in is the dynamics below the steady state level.

2. Set grid points {K1, K2, ..., Knk
}. Default is to set equidistance grid points. The value function

can be stores as a set of nk points {Vi}nk
1

3. Set an initial value of V 0 = {V 0
i }

nk
i=1. A trivial initial condition is V 0 = 0. More sophisticated

one is to compute the value when the agent is saving Ki capital stock each period and assign
it as the value associated with Ki. Be careful in using rather sophisticated guess, because in
some models, you might end up assigning infeasible decision for some states.

4. Update the value function and obtain V 1 = {V 1
i }

nk
i=1. More specifically, do the following steps

for each of i = 1, ..., nk.

(a) Compute the value conditional on the choice Kj. Call it V 1
i,j. It can be computed using

the Bellman Equation, as follows:

V 1
i,j = u(zF (Ki, 1) + (1− δ)Ki −Kj) + βV 0

j

If the consumption C = zF (Ki, 1) + (1 − δ)Ki − Kj turns out to be negative, assign a
very large negative number to V 1

i,j so that Kj will never be an optimal choice.

(b) Choose j which gives the highest value among {V 1
i,j}j = 1nk . Call it V 1

i . Store the optimal
decision as j = gi ∈ {1, 2, ..., nk}.

After implementing the procedure above for i = 1, ..., nk, We can construct a new (discretized)
value function as V 1 = {V 1

i }
nk
i=1.

5. Compare V 0 and V 1 and compute the distance d. One way to define the error is to use the
sup norm, as follows:

d = max
i∈{1,2,...,nk}

|V 0
i − V 1

i |
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6. If d > ϵ, the error is not small enough. Update the value function using:

V 0 = V 1

and go back to step 4.

7. If d ≤ ϵ, then we find our approximated optimal value function. The value function is V 1 =
{V 1

i }
nk
i=1. The optimal decision rule is g = {gi}nk

i=1.

8. Check if the bounds of the state space is not binding. In particular, make sure gi ∈ {2, 3, ..., nk−
1}. If not (gi = 1 or gi = nk for some i), the bounds of the state space is too tight. Relax the
bounds and restart.

9. Make sure that ϵ is small enough. Reduce ϵ and redo all the process. If the resulting optimal
decision rule is substantially different from the originally obtained one, the initial ϵ might be
too large. Keep reducing ϵ until the results are insensitive to a reduction in ϵ.

10. Make sure that nk is large enough. Increase nk and redo all the process. If the resulting value
function or the optimal decision rule is substantially different from the original one, the initial
nk might be too small. Keep increasing nk until the results are insensitive to an increase in
nk.

Below are some remarks:

1. If you have some information about the initial guess, use the information to give a good initial
guess. The quality of the initial guess is crucial in computational time. One thing you can
do is to run at first with small nk and use the obtained optimal decision to construct a good
guess for the next run with larger nk.

2. All the languages must have a built-in function to implement step 4(b). In fortran, the
function which picks up the largest value out of a vector is called maxloc.

4 Speed-up the Algorithm

There are three ways to speed-up the algorithm that we have studied. The most robust method is
called Howard policy iteration algorithm. This method works regardless of the properties of the
problem we are dealing with. The second option is to exploit properties of the value function
or the optimal decision rule. Of course, we have to know some properties of the value function or
the optimal decision rule to exploit. We will see two methods in this category, associated with two
different properties. The last option is to implement local search. It is an atheoretical method.
There is no guarantee that this method works, for some problem, but it turns out that for many
problems it turns out to be useful. But you have to be really careful in using the method. We will
see the four methods (in three categories above) one by one.

4.1 Howard’s Policy Iteration

The most time consuming part of Algorithm 1 above is to find an optimal choice for each state,
in each iteration. If we have an decision rule which is not far from the optimal one, we can apply
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the already obtained decision rule many times to update the value function many times, without
solving the optimal decision rule. This procedure lets us approach to the optimal value function
faster by updating the value function much more times than finding the optimal decision rules.
This is the idea of Howard’s policy function iteration.

In using the Howard’s algorithm, it is needed to set nh, which determines how many times we
update the value function using the already obtained decision rule. If the decision rule is close
to the optimal decision rule, higher nh implies faster convergence (because we can skip a lot of
optimization steps), but a decision rule which is obtained at the beginning or in the middle of the
iteration process might not be close to the optimal one. In this case, too high nh might hurt the
speed of convergence. This is because applying a wrong decision rule many times might put the
value function far away from the optimal one. So the bottom line is, you might want to do try and
error. Change nh to different values and see how the speed of convergence changes. That’s how we
can get a good sense of how to pick nh.

Suppose we picked nh. Howard’s policy iteration algorithm modifies the original algorithm by
inserting the steps specified below between step 4 and step 5. Let’s call the additional step as step
4.5. Step 4.5 is the following:

Algorithm 2 (Howard’s Policy Iteration Algorithm)
4.5 Set V 1,1 = V 1. Then update the value function V 1,t by applying the following steps nh times

and obtain V 1,nh. Replace V 1 by V 1,nh and go to step 5.

(a) For each of i = 1, 2, ..., nk, we have the optimal decision gi ∈ {1, 2, ..., nk} associated with
each of i.

(b) Update the value function from V 1,t to V 1,t+1 using the following modified Bellman Equa-
tion for each of i = 1, 2, ..., nk:

V 1,t+1
i = u(zF (Ki, 1) + (1− δ)Ki −Kgi) + βV 1,t

gi

An interesting case is nh = ∞. In other words, you are finding a fixed point to the following
equation, given {gi}nk

i=1:

V 1,∞
i = u(zF (Ki, 1) + (1− δ)Ki −Kgi) + βV 1,∞

gi

There are two ways to solve for V 1,∞
i . You could nest another iteration algorithm to find V 1,∞

i

(keep updating V 1,t
i until the error between V 1,t

i and V 1,t+1
i gets sufficiently small), or you could

solve for V 1,∞
i by constructing a matrix representation of the Bellman operator and solving for V 1,∞

i

(you need matrix inversion). If you are using Matlab, the second method might be a better one, as
Matlab is relatively fast in matrix operation.

4.2 Exploiting Monotonicity of Optimal Decision Rule

The basic idea of this algorithm is to reduce the number of grids that are searched when looking for
an optimal choice gi. It is possible when we know (correctly, for current problem) that the optimal
decision rule is an increasing function in K. In other words, take Ki and Kj where Ki < Kj. If the
associated optimal decisions are gi and gj, then gi ≤ gj. Notice that it could be that gi = gj. This
happens when the grids are not fine enough.
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Therefore, if we have obtained the optimal choice associated Ki (gi), and suppose we want to find
gj which is associated with Kj > Ki, we do not need to search grids {1, 2, ..., gi−1 − 1} because of
the monotonicity property of the decision rule.

Specifically, step 4 of algorithm 1 is going be replaced by the following:

Algorithm 3 (Exploiting Monotonicity of Optimal Decision Rule)
4 Update the value function and obtain V 1 = {V 1

i }
nk
1 . More specifically, do the following steps

for each of i = 1, ..., nk.

(a) Find the lower bound of the optimal choice j. For i = 1, j = 1. For i > 1, j = gi−1.

(b) Compute the value conditional on the choice Kj for j = j, j+1, ..., nk.Call it V
1
i,j. It can

be computed using the Bellman Equation, as follows:

V 1
i,j = u(F (zKi, 1) + (1− δ)Ki −Kj) + βV 0

j

If the consumption C = zF (Ki, 1) + (1 − δ)Ki − Kj turns out to be negative, assign a
very large negative number to V 1

i,j.

(c) Choose j which gives the highest value among {V 1
i,j}j = jnk . Call it V 1

i . Also store the
optimal decision j as gi = j.

4.3 Exploiting Concavity of the Value Function

The approach is similar to the previous trick. In our current model, the maximand in the Bellman
Equation is strictly concave in the choice K ′. Suppose we search for the optimal K ′ by looking at
the conditional value V 1

i,j from j = 1 to j = nk. We can start from j = 1 and keep increasing j
until it happens that V 1

i,j > V 1
i,j+1. If this happens, definitely the optimal value is V 1

i,j, because the
maximand is strictly concave and V 1

i,j will keep decreasing as j increases.

Specifically, step 4 of algorithm 1 is going be replaced by the following:

Algorithm 4 (Exploiting Concavity of the Value Function)
4 Update the value function and obtain V 1. More specifically, do the following steps for each of
i = 1, ..., nk.

(a) Set j = 1.

(b) Compute V 1
i,j using the following:

V 1
i,j = u(zF (Ki, 1) + (1− δ)Ki −Kj) + βV 0

j

(c) Compute V 1
i,j+1 using the following:

V 1
i,j+1 = u(zF (Ki, 1) + (1− δ)Ki −Kj+1) + βV 0

j+1

(d) Compare V 1
i,j and V 1

i,j+1. If V
1
i,j+1 is larger, do j = j + 1 and go back to step (b).

(e) Otherwise, V 1
i,j is the optimal value. gi = j
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5 Local Search

The idea of local search is that the optimal decision rule is going to be continuous. For our current
example, we know that the optimal decision rule is going to be a continuous function. Therefore, if
we know that gi = j for some i, and if we have reasonably fine grids, we are sure that gi+1 is located
in the neighborhood of j. So we might only need to search a small neighborhood of j in search for
gi+1.

Even if we don’t have the continuity result, we can guess that the optimal decision rule for gi looks
like, by implementing some experiments and see the obtained decision rule. If we are reasonably sure
that the optimal decision rule is close to continuous, we can limit our search to a small neighborhood
of gi = j when searching for gi+1. We can make sure that our guess is correct by solving the global
optimization (not limited to the neighborhood) after solving the value function using the local
search, or checking that the bounds we put are not binding in each iteration.

The algorithm requires a modification of Algorithm 1 as follows:

Algorithm 5 (Local Search)
Step 3.5 below must be added between step3 and 4 in Algorithm 1. Step 4 must be replaced by step
4 below. Finally, step 11 must be added at the end of Algorithm 1.

3.5 Fix s− and s+. These characterize the local search in the following way. The meaning is the
following. Suppose we have the optimal decision for Ki as gi, for i+ 1, we will search for the
region between j = max{1, gi − s−} and j = min{nk, gi + s+} for j = gi+1. It is easy to see
that small s− and s+ are aggressive, and time-saving but more risky.

4 Update the value function and obtain V 1 = {V 1
i }

nk
1 . More specifically, do the following steps

for each of i = 1, ..., nk.

(a) Find the lower and upper bounds of the optimal choice. For i = 1, use j = 1, and j = nk.
For i > 1, use the following formula:

j = max{1, gi−1 − s−}

j = min{nk, gi−1 + s+}

(b) Compute the value conditional on the choice Kj for j = j, j + 1, ..., j.Call it V 1
i,j. It can

be computed using the Bellman Equation, as follows:

V 1
i,j = u(F (zKi, 1) + (1− δ)Ki −Kj) + βV 0

j

If the consumption C = zF (Ki, 1) + (1 − δ)Ki − Kj turns out to be negative, assign a
very large negative number to V 1

i,j.

(c) Choose j which gives the highest value among {V 1
i,j}j = jnk . Call it V 1

i . Also store the
optimal decision j as gi = j.

(d) Check the validity. If gi = j or gi = j, most likely the local search is binding. The

neighborhood constricted by j and j is too restrictive. In this case, go to the global

search. Re-set j = 1, and j = nk and solve for V 1
i and gi again.
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10 After you finish the iteration, make sure that using the local search did not change the solution
of the original problem. You can check it by updating the value function without the local search
(global search) and make sure that the updated value is still within the tolerance level of the
value function that is obtained from the local search.

6 Final Remarks

Discretization method is considerably slower compared with other methods that you will learn,
but it’s the most robust method. Robustness is one of the most important (but sometimes under-
appreciated) property. As long as the computational time allows, I suggest you always use dis-
cretization as the starting point. As your model gets more complicated, you can move on to more
efficient method, but it’s always nice to be able to compare your results from efficient methods with
slower but more robust method like discretization to find bugs in your code or the problem in the
model easily.

In addition, the class of interesting problems which cannot be solved other than discretization
is large. Especially, the models where you don’t have the continuity of the value function or
the monotonicity of the optimal decision rule, one of the small number of available methods is
discretization.

Even though discretization is a very very slow method, there are ways to speed up the process,
like we learned, and all of them can be combined. An important lesson is, except for Howard’s
algorithm, you need to have properties of the solution. It’s always a nice thing to know as many
properties of the solution as possible before starting computation. The more properties you know
about the solution, you can use more speed-up tricks, you can use more sophisticated approximation
algorithm to exploit the properties, and it becomes easier to find problems in your results and thus
find bugs in your code.

As I discussed in the local search method, it is possible to make a wild guess and use one of the
speed-up tricks even if we are not sure about the properties of the value function or the optimal
decision rule. In this case, make sure to check the validity of the solution using the most robust
method (without any trick).
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