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1 Introduction

The model by Aiyagari (1994) is relatively easy to solve because we focus on the steady state
equilibrium, where type distribution of agents and thus the prices are constant over time. At the
individual level, there is a large degree of uncertainty and ex-post heterogeneity. However, the
individual uncertainty disappears at the aggregate level in the model, roughly because of the law
of large numbers. That’s why we can have constant prices in equilibrium even though individuals
face uninsurable idiosyncratic uncertainty.

However, if we want to introduce aggregate uncertainty to the model, we no longer have the luxury.
For example, if there is a shock to TFP, all the agents are equally affected by shocks to TFP,
so there is no way that the shock disappears at the aggregate level like shocks to the individual
productivity.

Since we need prices to solve the optimization problem of the individual agents, and the prices
are functions of the aggregate state of the world, we need to add these aggregate state variables to
the set of state variables. States variables which are associated with a particular agent is called
the individual state variables. In the model of Aiyagari (1994), we only need to take care of the
individual state variables since aggregate state variables turn out to be constant over time.

However, it’s a daunting task. In models with ex-post heterogeneity across agents, an aggregate state
variable is the type distribution of agents, which is potentially an enormous object. For example, in
the model of Aiyagari (1994), the type distribution is represented by a probability measure x(e, a)
where e ∈ E = {e1, e2, ..., ene} the current individual productivity and a ∈ A ⊂ R is the current
asset holding. How to deal with this huge object? Krusell and Smith (1998) propose that, for
the model of Aiyagari (1994) with aggregate uncertainty, we can obtain a very high precision by
approximating the type distribution of agents using some moments of the distribution. In particular,
they show that, in order to store the distribution of assets, we only need to store the mean asset
holding to obtain a reasonable level of precision.

We will start by the general characterization of equilibrium with aggregate uncertainty, then we see
an approximated equilibrium proposed by Krusell and Smith (1998). Then we study the solution
algorithm of the approximated equilibrium. Good sources of information are Rı́os-Rull (1999) and
Heer and Maussner (2005). In a separate note, I will cover extensions of the basic model with both
aggregate and idiosyncratic uncertainty.

Closely related models are the ones by Castañeda et al. (1998) and Storesletten et al. (2001). Instead
of using a model with infinitely-lived agents, both papers use a model with overlapping generations
of finitely-lived agents, and with both idiosyncratic and aggregate uncertainty. Basically, their
models are Huggett (1996) with aggregate uncertainty. The solution method is essentially the same
as the one presented below.
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2 Model with both Idiosyncratic and Aggregate Uncertainty

Let’s start by describing the general environment of the model.

Model 1 (Krusell and Smith (1998))
1. Time is discrete (t = 0, 1, ...). There are continuum of infinitely-lived agents. Total number

of agents is normalized to one. Each agent has the following preference:

E0

∞∑
t=0

βtu(ct)

2. Agents are given asset a0 initially and one unit of time in each period. Agents spend all of
their time in working, since leisure is not valued.

3. Agents can hold asset at ∈ A = [a, a] which yields return rt in period t. This is the only way
to save. In particular, agents cannot trade Arrow securities to insure against idiosyncratic
uncertainty.

4. An agent can be either employed et = 1 or unemployed et = 0 in each period. The employment
status et follows a first order Markov process with the transition matrix pee,e′|z,z′. The transition
matrix is assumed to be conditional on z and z′. We will discuss more about this assumption
later. The labor income of an agent with type et can be denoted by wt et, where wt is the wage.

5. There is a representative firm which has access to the following CRS technology:

Yt = ztF (Kt, Lt)

where Kt is capital input and Lt is labor input. The representative firm rents inputs in
competitive markets. capital depreciates at a constant rate δ.

6. zt ∈ Z = {z1, z2, ..., znz} follows a first order Markov process with the transition matrix pzz,z′.
Following Krusell and Smith (1998), we use nz = 2 and call the two states z1 and z2 as
expansion and recession, respectively.

It might seem odd that the transition matrix for e depends not only z but also z′. There is a
reason to do so. By wisely choosing the transition probabilities pee,e′|z,z′ , we can obtain the constant

but different number of the unemployed (and thus the employed) in each state of z. For example,
let assume z can take one of the two values, expansion (z1) and recession (z2). We can pin down
transition probabilities such that the proportion of the unemployed is always 10% in recessions (z2)
while the proportion of the unemployed is always 4% in expansions (z1), regardless of the state z
in the previous period. If the transition probabilities are not pinned down in this way, we need to
keep track of the number of the unemployed (and the employed) to simulate the economy. However,
using the trick, the number of the unemployed is perfectly characterized by the current z so we
don’t need to keep track of the number of unemployed.

Therefore, the aggregate labor supply, which is equal to the proportion of the employed, is only a
function of z. Let’s denote the aggregate labor supply conditional on z as L(z). By construction,
L(z1) = 0.96 and L(z2) = 0.90.

We make the following assumptions on the functional forms:
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1. The following CRRA utility function is assumed:

u(ct) =
c1−σ
t

1− σ

where σ is the coefficient of relative risk aversion. Intertemporal elasticity of substitution is 1
σ

2. Production function is assumed to be Cobb-Douglas:

Yt = ztK
θ
t L

1−θ
t

As for the parameter values, Krusell and Smith (1998) set one period as a quarter and use the
following values:

σ = 1 (implying log utility), β = 0.99, δ = 0.025, z1 = 1.01, z2 = 0.99, θ = 0.36. pz are pinned down
such that the average duration of both an expansion and a recession is 8 quarters. pe are pinned
down such that (i) average duration of unemployment during expansions is 1.5 quarters, (ii) average
duration of unemployment in recessions is 2.5 quarters, (iii) unemployment rate in expansions is
4%, (iv) unemployment rate in recessions is 10%, (v) pe0,0|1,2 = 1.25pe0,0|2,2, (vi) pe0,0|2,1 = 0.75pe0,0|1,1.

Since the number of free parameters in pe matrix is 8, and the conditions (iii) and (iv) are used
twice, we can pin down all the transition probabilities using the conditions above.

3 Recursive Formulation

As usual, let’s formulate the equilibrium recursively. First, let’s recursively formulate the problem
of an agent.

Problem 1 (Recursive formulation of agent’s problem)

V (z, x, e, a) = max
c∈R+,a′∈A

{
u(c) + β

∑
z′

∑
e′

pzz,z′p
e
e,e′|z,z′V (z′, x′, e′, a′)

}
(1)

subject to

a(1 + r(z, x)) + w(z, x)e = a′ + c

x′ = ϕx(z, x)

Notice that r and w are functions of the aggregate state of the world (z, x) in an equilibrium.
Remember that the optimal decision of the representative firm implies:

r = θzKθ−1L1−θ − δ

w = (1− θ)zKθL−θ

where

K =

∫
X

a dx
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L =

∫
X

e dx

These imply that z and x are sufficient to compute equilibrium w and r.

Denote the optimal decision rules as c = gc(z, x, e, a) and a′ = ga(z, x, e, a). We can define the
recursive competitive equilibrium as follows:

Definition 1 (Recursive competitive equilibrium)
A recursive competitive equilibrium consists of pricing functions r(z, x), w(z, x), forecasting function
for x, ϕx(z, x), value function V (z, x, e, a), optimal decision rules gc(z, x, e, a) and ga(z, x, e, a), such
that:

1. Agent’s optimization: Value function V (z, x, e, a) solves the Bellman equation (1).
gc(z, x, e, a) and ga(z, x, e, a) are the associated optimal decision rules.

2. Firm’s optimization: Pricing functions r(z, x) and w(z, x) satisfy the following marginal
conditions:

r(z, x) = θzKθ−1L1−θ − δ

w(z, x) = (1− θ)zKθL−θ

where

K =

∫
X

a dx

L =

∫
X

e dx

3. Consistency: The forecasting function ϕx(z, x) is consistent with the actual law of motion
implied by the optimal decision rule ga(z, x, e, a) and the transition matrices for z and e.

4 Krusell and Smith (1998) Approximation

A big problem in computing the equilibrium defined above is how to deal with the type distribution
x. x is an argument for many functions if you look at the definition of the equilibrium. If you
have a large dimensional object like x, a natural way to go is to replace x by simpler objects that
represent x. How can we choose a set of variables to represent x?

Notice first that we don’t need to worry about e. The distribution of e (the proportion of the
employed or the unemployed) is determined by the current z, thanks to the way we set up the
transition matrix for e. In general, however, we need to include the proportion of the employed (or
the unemployed) to the set of variables which represent x (for example, see Nakajima (2007)).

Second, how do we represent the distribution of asset holding? A natural choice is to use the
moments of the asset distribution. But there is a huge degree of freedom. For example, it is
possible to use the fraction of assets held by the certain fraction of people to represent the asset
distribution. Or, you can use Gini index. What Krusell and Smith (1998) show is that, for the
current model, it is enough to use only the first moment (mean asset holding) to represent the asset
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distribution. It turns out that adding higher moments to represent x does not change the result
substantially.

The intuition of this surprising result is that, because the optimal decision rule with respect to
the asset holding is close to linear in the current asset holding for both employed and unemployed
agents, type distribution does not matter much. Actually, in case the optimal decision rule is
perfectly linear, it can be shown that the distribution doesn’t matter at all to know the dynamics
of aggregate variables. See Chatterjee (1994).

One interpretation of the approximation method is that agents are assumed to be boundedly ra-
tional, or using only the partial information when making their decision. In the true equilibrium,
agents are supposed to know (z, x, e, a) when solving their optimization problem. However, here we
assume that they can only use the first moment of asset distribution instead of x. In other words,
the quality of approximation depends on to what extent the additional information contained in
x but not the first moment of asset holding distribution change the optimal decision of agents.
The results obtained by Krusell and Smith (1998) imply that the additional information are not so
valuable for agents in solving their optimization problem.

Anyway, for simplicity, let’s represent x by the mean asset holding. Having more statistics to
represent x is a trivial extension. Because we normalize the population size to be unity, the mean
asset holding is equal to the total asset holding K, which is:

K =

∫
X

a dx

Let’s use K instead of x to formulate the agent’s problem:

Problem 2 (Recursive formulation of agent’s problem with partial information)

V (z,K, e, a) = max
c∈R+,a′∈A

{
u(c) + β

∑
z′

∑
e′

pzz,z′p
e
e,e′|z,z′V (z′, K ′, e′, a′)

}
(2)

subject to

a(1 + r(z,K)) + w(z,K)e = a′ + c

K ′ = ϕK(z,K)

The problem is much easier to handle, since we have K, which is a real number, instead of x, a
probability measure. The recursive equilibrium can be defined as follows:

Definition 2 (Recursive competitive equilibrium with partial information)
A recursive competitive equilibrium consists of pricing functions r(z,K), w(z,K), forecasting func-
tion for K, ϕK(z,K), value function V (z,K, e, a), optimal decision rules gc(z,K, e, a) and ga(z,K, e, a),
such that:

1. Agent’s optimization: Value function V (z,K, e, a) solves the Bellman equation (2).
gc(z,K, e, a) and ga(z,K, e, a) are the associated optimal decision rules.

2. Firm’s optimization: Pricing functions r(z,K) and w(z,K) satisfy the following marginal
conditions:

r(z,K) = θzKθ−1L(z)1−θ − δ
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w(z,K) = (1− θ)zKθL(z)−θ

3. Consistency: The forecasting function ϕK(z,K) is consistent with the actual law of motion
implied by the optimal decision rule ga(z,K, e, a) and the transition matrices for z and e.

5 Solution Algorithm

Remember the solution algorithm of Aiyagari (1994) economy. We have an outside loop to find a set
of equilibrium prices. Similarly, we need to have an outside loop to find an equilibrium forecasting
function (law of motion) ϕK(z,K). Instead of actually iterating in the space of functions, we will
first parameterize the forecasting function and iterate in the space of parameters. Therefore, a
key choice that we have to make at this point is how to parameterize the forecasting function. A
functional form suggested by Krusell and Smith (1998) and used by many other applications is
log-linear form. Using log-linear form, ϕK(z,K) can be parameterized as follows:

logK ′ = ϕK,0,z + ϕK,1,zlogK

Since z can take one of the two values, there are 4 (= 2 × 2) coefficients that characterize the
forecasting function.

Now we are ready to summarize the solution method for the model of Krusell and Smith (1998):

Algorithm 1 (Solution algorithm: model of Krusell and Smith (1998))
1. Set z at its unconditional mean (z = 1), and solve the steady state version of the model. The

solution method is the one used for the model by Aiyagari (1994). Denote x and K as the
steady state type distribution and the capital stock, respectively. We will use them later.

2. Choose the set of statistics that represent the type distribution. For simplicity, we use the
mean asset holding K as the only statistic as an example.

3. Parameterize the forecasting function. As an example, we use the following log-linear func-
tional form:

logK ′ = ϕK,0,z + ϕK,1,zlogK

4. Set grid points for the space of K. Let’s denote them as {K1, K2, ..., KnK
}. Since it is expected

that the curvature of the value function or the optimal decision rules with respect to K is not
large with respect to K, usually not a large nK is necessary to obtain a good approximation.
Krusell and Smith (1998) use nK as low as 25.

5. Set the initial guess for ϕ0
K,0,z and ϕ0

K,1,z. A conservative and reasonable guess is:

ϕ0
K,0,z = logK

ϕ0
K,1,z = 0

6. Using the guess for ϕK,0,z and ϕK,1,z, solve the optimization problem for the agent. Specifically,
do the following steps:

6



(a) Guess V0(z,K, e, a).

(b) Using V0(z,K, e, a) as the value in the next period, and using the Bellman equation,
update the value function to obtain V1(z,K, e, a). In order to compute the value in the
next period, you need to interpolate the value in the dimension of K. You can use either
the piecewise-linear approximation, or polynomial approximation.

(c) Compare V0(z,K, e, a) and V1(z,K, e, a). If the distance between the two measured by,
for example, the sup-norm is less than a predetermined tolerance level, the iteration is
done. Otherwise, update V (z,K, e, a) by V0(z,K, e, a) = V1(z,K, e, a) and go back to step
(b).

7. Using the optimal decision rules obtained in the previous step, implement the simulation.
Specifically, do the following steps:

(a) Set the number of periods T and the number of periods which will be cut T0. Heer and
Maussner (2005) use T = 3000 and T0 = 500. Krusell and Smith (1998)use T = 11000
and T0 = 1000.

(b) Choose z0 and draw a sequence of zt for t = 0, 1, ..., T , using a random number generator.
It’s better to keep the draw of zt and use the same draw again and again every time the
economy is simulated. Otherwise, the simulation result depends on the realization of {zt}
and thus it is hard to get a convergence.

(c) Set the initial type distribution x0. A reasonable choice is x0 = x.

(d) Using x0, you can compute K0, which is the aggregate (mean) capital stock associated
with x0.

(e) Using the optimal decision rule ga(z,K, e, a), and the transition probabilities of e, update
the distribution x0 and obtain x1. You can also compute K1 from x1.

(f) Keep implementing the previous step until period t = T .

(g) Now we have the sequences of xt and Kt.

8. Drop the first T0 periods in order to eliminate the influence of the arbitrary (reasonable though)
choice of the initial distribution and initial z.

9. Use {zt, Kt}Tt=T0+1 and OLS regression to obtain the new set of coefficients for the forecasting
function, ϕ1

K,0,z and ϕ1
K,1,z

10. Compare ϕ0
K,0,z and ϕ1

K,0,z and ϕ0
K,1,z and ϕ1

K,1,z. If the distance of coefficients are all less than
a predetermined tolerance level, done. Otherwise, update both ϕK,0,z and ϕK,1,z and go back to
step 6. In updating, it’s good to be conservative. Use the following updating formula with a
small λ:

ϕ0
K,0,z = λϕ1

K,0,z + (1− λ)ϕ0
K,0,z

ϕ0
K,1,z = λϕ1

K,1,z + (1− λ)ϕ0
K,1,z

11. If a consistent set of ϕK,0,z and ϕK,1,z are obtained, check the goodness of fit. You can use R2

or other measures for goodness of fit. If the fit is not satisfactory, either try richer functional
form for the forecasting function, or increase the set of statistics that represent the distribution
(for example, add higher moments of the asset distribution).
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