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1 Introduction

In dealing with variety of heterogeneous agent models where agents might have zero measure, and
where agents’ type includes continuous variable (like asset holding), we need a consistent way to
keep track of the type distribution of agents. That’s why we need the help of the measure theory.
We will study the minimum set of knowledge on the measure theory to deal with the issue. The part
of this note is based on the Appendix of Ŕıos-Rull (1999), or the note written by Josep Pijoan-Mas.

Once we acquired how to store the type distribution theoretically, we will learn how to store the
type distribution in computers.

2 Quick Course in Measure Theory

Let A a set. For example, A ⊂ R.
Definition 1 (power wet)
Power set P(A) is a set of all subsets of A.

Definition 2 (family of sets over A)
A is a family of sets over A if A is a non-empty subset of P(A).

Notice that, if a ∈ A, a ⊂ A.

Definition 3 (algebra)
A is an algebra if (i) A is closed under complements (a ∈ A ⇒ ac ∈ A), and (ii) A contains the
empty set (∅ ∈ A).

Notice that the two conditions together imply A ∈ A.

Definition 4 (σ-algebra)
A is a σ-algebra if A is an algebra and A is closed under countable unions ({ai} ∈ A ⇒ ∪iai ∈ A).

Definition 5 (Borel σ-algebra)
Borel σ-algebra is a σ-algebra generated by a family of open sets.

An important Borel σ-algebra is the one defined over A = R.
Definition 6 (measure)
A function x : A → R+ is a measure if (i) the empty set has measure zero (x(∅) = 0), and (ii) x
satisfies countable additivity (σ-additivity) (x(∪iai) = ∪ix(ai) for pairwise disjoint sets ai ∈ A)

Definition 7 (probability measure)
Probability measure is a measure with x(A) = 1.
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Definition 8 (measure space)
The triple (A,A, x) is called a measure space.

Definition 9 (probability space)
A probability space is a measure space with probability measure.

In storing the type distribution of heterogeneous agents, we use a probability space (A,A, x), where
A is the space of agents’ type (an implicit assumption here is that the size of population is normalized
to one).

Definition 10 (measurable function)
A function g : A → R is measurable with respect to (A,A) if D ≡ {a ∈ A|g(a) ≤ c} ∈ A ∀c ∈ R

Definition 11 (transition function)
A function Q : A × A → R is a transition function if (i) given a ∈ A, Q(a, .) is a probability
measure, and (ii) given B ∈ A, Q(., B) is measurable function.

As the names indicates, a transition function is used to update the type distribution of agents. If
x is updated to x′ by Q, we can write down x′ as follows:

x′(B) =

∫
A

Q(a,B) dx

Naturally, the invariant distribution associated with Q can be easily defined as follows:

Definition 12 (invariant distribution)
A measure x∗ is an invariant distribution with respect to the transition function Q if, for all B ∈ A:

x∗(B) =

∫
A

Q(a,B) dx∗

Roughly speaking, an invariant distribution x∗ is a distribution which ends up the same distribution
when updated with Q.

3 Convenience of Measure Space

When we use a probability space (A,A, x) to store the type distribution of agents, it’s easy to
define variety of aggregate statistics. To see the point, let’s assume that the type space is defined as
A = § × K, where § = {s1, s2, ..., sn} and K ⊂ R+. § is the space of individual productivity, and K
is the space of capital stock. An agent is characterized by (s, k) ∈ §×K = A. Assume that there is
no labor-leisure choice, so that s represents the productivity-adjusted individual labor supply. Also
assume that the transition probabilities from si to si′ is πii′

Suppose the type distribution is x. Then the aggregate capital stock K, and aggregate labor supply
L can be compactly expressed as follows:

K =

∫
A

k dx

L =

∫
A

s dx
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Because the total population size is normalized to one, we have:

1 =

∫
A

dx

Notice that, since the total population size is one, the aggregate and the average can be used
interchangeably.

The measure of agents whose capital stock holding is higher than the average is:∫
A

Ik>K dx

where I is an indicator function which takes the value 1 if the condition attached to the indicator
function is true, and 0 otherwise. The measure of agents with s = si is:∫

A

Is=si dx

The average capital stock holding of type si agents is:∫
A
kIs=si dx∫

A
Is=si dx

The proportion of capital stock owned by type si agents is:∫
A
kIs=si dx∫
A
k dx

4 Approximation of Type Distribution

Let’s keep using the example above. We have the type space A = K × § and use the probability
space (A,A, x) to represent the type distribution of agents. Obviously, computers cannot handle
the type distribution as it is, if the type includes continuous variable, like k in the current example.
Naturally, we need to somehow approximate the type distribution. How? Three ways are presented
in the following three sections below. In each of the sections, the approximation method is explained.
And the algorithms to update the distribution using decision rules and transition matrices are also
explained.

5 Discretization or Step Function Approximation of CDF

5.1 Approximation

The most intuitive way is to discretize K using a large (but finite, of course) number of grid points.
Let’s define K̂ = {kj}mj=1. Then the type distribution is approximated by {pij}, which is the measure
assigned to (si, kj). By construction:

pij ≥ 0 ∀i, j
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∑
i

∑
j

pij = 1

The method can be interpreted as using step functions to approximate the cumulative density
function with respect to k. To see the point more clearly, let’s assume K is a compact set and denote
Ψi(k) as the cumulative density function conditional on s = si. Further assume that K̂ = {kj}mj=1

is a set of grid points over the space K. If we use the discretization discussed above to approximate
the type distribution, it is equivalent to approximate the type distribution using the following step
function to approximate Ψi(k).

Ψi(k) =
ℓ∑

j=1

pij for kℓ ≤ k < kℓ+1

Ψi(k) =
m∑
j=1

pij for k = km

By construction:∑
i

Ψi(km) = 1

And Ψi(km) is the total measure of type s = si agents.

Using this approximation method, various statistics can be easily computed as follows:

Aggregate (=average) asset holding =
n∑
i

m∑
j

kjpij

Aggregate (=average) labor supply =
n∑
i

m∑
j

sipij

5.2 Updating

Suppose the distribution is approximated using this method. If the space of K is discretized in
the same way when the optimal decision rule is found, it is very easy to update the distribution.
Suppose the optimal decision rule takes the following form:

j′ = gk(i, j)

where j′ represents the grid point of the asset holding in the next period. If we want to update the
distribution, we only need to use the following simple algorithm:

Algorithm 1 (Updating distribution with discretized decision rules )
1. Set p′ij = 0

2. For i = 1, 2, ..., n, j = 1, 2, ...,m, i′ = 1, 3, ..., n, do the following:

p′i′gk(i,j) = p′i′gk(i,j) + πii′pij
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This is basically constructing a transition matrix of size (n×m)× (n× n) and multiply the initial
distribution by the transition matrix to update a distribution.

Next, consider the case when the optimal decision rule is not discretized. Assume the following
form of the optimal decision rule:

k′ = gk(s, k)

You can you the following algorithm to update a distribution:

Algorithm 2 (Updating distribution with continuous decision rules )
1. For i = 1, 2, ..., n, j = 1, 2, ...,m, do the followings:

2. Find a grid point kj′ which satisfies the following:

kj′ ≤ gk(si, kj) ≤ kj′+1

3. For i′ = 1, 2, ..., n, implement the following addition:

p′(si′ , kj′) = p′(si′ , kj′) + p(si, kj)πii′
kj′+1 − gk(si, kj)

kj′+1 − kj′

p′(si′ , kj′+1) = p′(si′ , kj′+1) + p(si, kj)πii′
gk(si, kj)− kj′

kj′+1 − kj′

Notice that the last step is a kind of lottery.

Notice that what is done at step 3 is a kind of lottery. Almost surely, an optimal choice gk(s, k) does
not happen to be one of the grid points. Suppose gk(s, k) falls between grid kj′ and kj′+1. If this

is the case, what we do here is to let the agents to draw a lottery and the proportion
kj′+1−gk(si,kj)

kj′+1−kj′

are forced to choose kj′ and the rest are forced to choose kj′+1. This is a nice trick to deal with the
finite grid point approximation of the distribution.

6 Piecewise-Linear Approximation of CDF

6.1 Approximation

The method is proposed by Ŕıos-Rull (1999). Instead of using a step function to approximate
the CDF, he proposes using piecewise-linear approximation. Formally, put grids on the space of
capital stock holding {kj}mj=1. m need not be as large as in the case of discretization to achieve
the same level of precision. Let the cumulative density with respect to kj, conditional on si, as
pij. Then the distribution is stored by {pij}. pij represents the measure of agents with s = si and
k ≤ kj. To evaluate the cumulative density not on one of the grid points, use the piecewise-linear
approximation. More formally:

Ψi(k) = pij +
pij+1 − pij
kj+1 − kj

(k − kj) for kj ≤ k ≤ kj+1

By construction:∑
i

Ψi(km) = 1
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And Ψi(km) is the total measure of type s = si agents.

Using piecewise-linear approximation is important because the piecewise-linear approximation is
shape-preserving. For example, if Chebyshev polynomial or cubic spline function is used to ap-
proximate the true CDF, it could be the case that the approximated function decreases for some k,
which should not happen. There is no such problem with piecewise-linear approximation because
the piecewise-linear approximation preserves monotonicity of the original function.

A natural extension of the previous method is to use other kinds of shape-preserving spline approx-
imation to approximate CDF with respect to k, conditional on si. Please see the note for finite
element method for alternatives.

6.2 Updating

If the optimal decision rule k′ = gk(s, k) is an increasing function, we can use the following algorithm,
proposed by Ŕıos-Rull (1999) to efficiently update the distribution function Ψi(k):

Algorithm 3 (Updating distribution: CDF Ψ(si, a) )
1. For i = 1, 2, ..., n, j′ = 1, 2, ...,m, do the followings:

2. Find k̃ which satisfies the following:

kj′ = gk(si, k̃)

Or, using the inverse function representation:

k̃ = g−1
k (si, kj′)

Notice that you need a numerical root finder to implement this step in general, but the use of
piecewise-linear function makes the search for k̃ an easy task (think yourself why).

3. For i′ = 1, 2, ..., n, execute the following:

Ψ′(s′i, kj′) = Ψ′(si′ , kj′) + πii′Ψ(si, k̃)

Ψ(si, k̃) can be computed easily, using the piecewise-linear approximation. Notice that you can
do this because the optimal decision rule is increasing; those who have si and k ≤ k̃ chooses
k′ ≤ kj′ optimally.

7 Monte-Carlo Simulation

7.1 Approximation

The method is not directly related to other methods, or the way we handle type distribution. But
one popular way to approximate the distribution is to create finite (but large) number of agents
and approximate the type distribution of agents by implementing Monte-Carlo simulation of the
model economy with the agents. Suppose we use N agents. Then we basically approximate the
type distribution using {(si, ki)}Ni=1. The method is useful for computing some statistics, but the
method is stochastic in the sense that the type distribution depends on the realization of shocks
for each agent. Therefore, it’s relatively hard to obtain convergence when we are looking for the
stationary distribution.
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7.2 Updating

Since we are storing the type distribution by the type of large number of agents, it’s straightforward
to update the distribution. Basically, all you need is to simulate the economy for one period. Below
is how:

Algorithm 4 (Updating Distribution: Monte-Carlo Simulation )
1. For i = 1, 2, ..., N , update the individual state (si, ki) using the following procedure:

2. Updating the asset holding k′i is easy, as we have already obtained the optimal decision rule:

k′i = gk(s
i, ki)

3. Updating si is a bit tricky. We want to update si using the transition probability of the Markov
chain, and a random number generator. Let’s use the uniform [0, 1] random generator, which
is available for any computer language. Let d ∈ [0, 1] is a draw from a random number
generator. Suppose an agent has si = sj. Let j̃′ be the smallest integer that satisfies the
following:

d ≤
j̃′∑

j′=1

pjj′

What does the j′ mean? sj′ is the next period shock to the agent i, according to the transition
probability and a random number d.

4. At the end, the new individual state for agent i is (s′i = sj′ , k
′i).
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