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1 Introduction

We quickly review the basics of the dynamic programming. We look at two classes of problems
separately: infinite horizon and finite horizon.

The classic reference on the dynamic programming is Bellman (1957) and Bertsekas (1976). More
recent one is Bertsekas (1995). Stokey et al. (1989) is the basic reference for economists.

2 Finite Horizon: A Simple Example

Consider the following life-cycle consumption-savings problem of an agent who lives for I periods.
An agent is endowed with k1 when he is born (age 1), earns ei in age i, and chooses how much to
save and consume in each period. The interest rate associated with savings is r.

Problem 1 (Life-cycle model: sequential formulation)

max
{ci,ki+1}I1

I∑
i=1

βi−1u(ci)

subject to

k1 given

ci + ki+1 = (1 + r)ki + ei ∀i
ci ≥ 0 ∀i
ki+1 ≥ 0 ∀i

The solution to the problem is a sequence {ci, ki+1}I1 which maximizes the discounted sum of period
utility of the agent. Therefore, potentially, this is a hard problem. If different agents have different
k1, the optimal sequence of consumption and savings must be found for each k1.

The beauty of the dynamic programming is to convert the sequential problem into a collection of
two-period problems, each of which is easy to solve. Let’s see how we can transform the sequential
problem into a collection of two-period problems.

Since we convert the original sequential problem into a collection of small problems, it is important
to make sure that the solution to each of the small problems is actually optimal in the original
problem. In other words, the optimal choice in each of the two-period problem must be globally
optimal to justify the transformation. Richard Bellman, the inventor of the dynamic programming
method, calls it the Principle of Optimality.
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When we convert a sequential problem into a dynamic programming problem, we need to detect
state variables and control variables. State variables are the variables which are pre-determined
when decision is made, and relevant for pay-offs. They can be exogenous or endogenous. For the
current example, the capital stock holding k and age i are the state variables. Control variables
are the ones that the agent choose in each period, conditional on the state variables. In the current
example, c and k′ are the control variables. Actually, however, the smallest set of control variables
is either one of k′ or c, because once you have one of the two, you can compute the other using
the budget constraint and the state variables. We use c as the control variable below, but you can
proceed with k′ instead and can get exactly the same results.

Notice that it is important that the prices are constant. In other words, the problem is stationary.
If the prices are changing over time, agents need to know the prices to make a decision. In other
words, prices have to be included as a part of the state variables. If prices are functions of some
aggregate states of the world, we can include aggregate states of the world instead of the prices in
the set of state variables. State variables which are agent specific are called individual state variable,
and the state variables which are not individual specific are called the aggregate state variables. In
the current problem, there is no aggregate state variable.

Let’s define a value function for age i. It gives the sum of discounted utility from the current period
on conditional on the state variables. The value function for the current problem is V (i, k). Since
the life of an agent starts from age 1, we have:

V (1, k1) = max
{ci,ki+1}I1

I∑
i=1

βi−1u(ci)

subject to

ci + ki+1 = (1 + r)ki + ei ∀i
ci ≥ 0 ∀i
ki+1 ≥ 0 ∀i

In age 2, given k2, the agent solves the following problem:

V (2, k2) = max
{ci,ki+1}I2

I∑
i=2

βi−2u(ci)

subject to

ci + ki+1 = (1 + r)ki + ei ∀i
ci ≥ 0 ∀i
ki+1 ≥ 0 ∀i

Notice that, in age 2, the agent does not discount the utility in age 2. That’s why the power to β
is i − 2 instead of i − 1. From the point of view from age 1 agent, the utility in age 2 has to be
discounted at β.

For a easier notation, let’s define the constraint set, which is a mapping from the set of state
variables, C(i, ki) as follows:

C(i, ki) = {(ci, ki+1)|ci ≥ 0, ki+1 ≥ 0, ci + ki+1 = (1 + r)ki + ei}
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Now, go back to the problem in age 1.

V (1, k1) = max
{(ci,ki+1)∈C(i,ki)}I1

I∑
i=1

βi−1u(ci)

= max
(c1,k2)∈C(1,k1)

{
u(c1) + max

{(ci,ki+1)∈C(i,ki)}I2

I∑
i=2

βi−1u(ci)

}

= max
(c1,k2)∈C(1,k1)

{
u(c1) + β max

{(ci,ki+1)∈C(i,ki)}I2

I∑
i=2

βi−2u(ci)

}
= max

(c1,k2)∈C(1,k1)
{u(c1) + βV (2, k2)}

The last equation holds for any i = 1, 2, ..., I. Another way of saying this is that the problem has
a recursive structure. In addition, the last equation contains only the variables in age 1 and age 2.
Or, in general, the equation for age i contains only variables in i and i+ 1. Following the standard
notation, let’s denote the variable in age i and i + 1 as those without and with primes. Then we
get the following representation of the problem, which is called the Bellman equation.

Problem 2 (Life-cycle model: recursive formulation)

V (i, k) = max
(c,k′)∈C(i,k)

{u(c) + βV (i+ 1, k′)}

The optimal decision rules are the functions from the state variables to the choice variables. The
optimal decision rules associated with the recursive problem are k′ = dk(i, k) and c = dc(i, k).

Since this is a finite horizon problem, the problem can be solved using backward induction. Notice
V (I+1, k) = 0 for all k (there’s no utility after the death of the agent). It implies that dk(I, k) = 0,
and dc(I, k) = (1 + r)k + ei. With these optimal decisions, we can compute V (I, k) = u(dc(I, k)).
With V (I, k), and the Bellman equation, we can solve for V (I − 1, k). And we can continue until
we solve for V (1, k).

3 Infinite Horizon: A Simple Example

Consider the following problem:

Problem 3 (Neoclassical growth model: sequential formulation)

max
{Ct,Kt+1}∞0

∞∑
t=0

βtu(Ct)

subject to

K0 given

Ct +Kt+1 = F (Kt) + (1− δ)Kt ∀t
Ct ≥ 0 ∀t
Kt+1 ≥ 0 ∀t
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With a neoclassical production function F (K), this is the standard neoclassical growth model.
Apparently, an solution to the problem is an infinite sequence {Ct, Kt+1}∞0 . This is a hard problem.

The beauty of dynamic programming is to convert a sequential problem like this into a collection of
two-period problems, which is easier to handle. Let’s see how the example above can be converted.

Notice that, for the infinite horizon problem, the problem that the agent faces in the next period
is exactly the same if the same amount of capital is endowed. This is because the time horizon
is infinite. The future from today and the future from tomorrow is of the same length (which is
infinity). Therefore, the value function for the problem, which is the sum of discounted utility that
the agent in the problem gains optimally, is not a function of the time period, but only of the capital
stock endowed. Formally, the value function can be defined as follows:

V (K0) = max
{(Ct,Kt+1)∈C(Kt)}∞0

∞∑
t=0

βtu(Ct)

such that

C(Kt) = {(Ct, K(t+ 1))|Ct ≥ 0, Kt+1 ≥ 0, Ct +Kt+1 = F (Kt) + (1− δ)Kt}

Now, notice that, in period 0, K0 is pre-determined, and C0 and K1 are chosen. In period 1, K1

is pre-determined, and C1 and K2 are chosen. We can separate the problem in period 0 and the
problem after period 1 as follows:

V (K0) = max
{(Ct,Kt+1)∈C(Kt)}∞0

∞∑
t=0

βtu(Ct)

= max
{(Ct,Kt+1)∈C(Kt)}∞0

{
u(C0) +

∞∑
t=1

βtu(Ct)

}

= max
(C0,K1)∈C(K0)

{
u(C0) + max

{(Ct,Kt+1)∈C(Kt)}∞1

∞∑
t=1

βtu(Ct)

}

= max
(C0,K1)∈C(K0)

{
u(C0) + β max

{(Ct,Kt+1)∈C(Kt)}∞0

∞∑
t=0

βtu(Ct+1)

}
The important assumption behind this transformation is that the optimal decision made in t = 1 is
also optimal even if the choice is made in t = 0. That’s why we can separate the optimal decision
problem from period 1 on from the optimal decision problem in period 0. In other words, Principle
of Optimality is (correctly) assumed.

Notice that, the problem inside the bracket looks identical to the original problem, except for the
starting period which is 1. In other words, the problem has a recursive structure. Thanks to the
recursive structure, we can replace the problem inside the bracket by the same value function,
conditional on K1 instead of K0. Now we have:

V (K0) = max
(C0,K1)∈C(K0)

{u(C0) + βV (K1)}

Since we have only period 0 and period 1 in the equation above, we can drop the time script, and
denote that the variables in period 0 as those without a prime, and the variables in period 1 as
those with primes. Then we have:
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Problem 4 (Neoclassical growth model: recursive formulation)

V (K) = max
(C,K′)∈C(K)

{u(C) + βV (K ′)}

This equation is called the Bellman equation. Notice that, since the problem has a recursive struc-
ture, the optimal choice in the model is characterized by functions K ′ = dK(K) and C = dC(K).
Instead of finding an optimal sequence {Ct, Kt+1}∞0 , we only need to find the optimal choice of K ′

and C given K.

A problem is that, it doesn’t seem that we can apply the same solution method (backward induction)
as for the finite horizon model, since there is no last period. Moreover, we are not sure if the value
function which satisfies the Bellman equation exits. Actually, for a large class of models that we
use, we have nice properties of the model, as shown below.

4 Infinite Horizon: General Formulation

Notice that the Bellman equation can be interpreted as a functional equation, or an operator. The
Bellman equation maps a value function V (K) into another value function V (K). The two are not
necessarily the same. But the value function that we are looking for is the fixed point of the Bellman
operator. In this sense, the Bellman equation implicitly characterizes the value function V (K). We
know that, under a set of conditions which are satisfied by many models used in macroeconomics,
the Bellman operator the one above has a fixed point V ∗(K). Moreover, it’s unique.

In order to use the results of Stokey et al. (1989) (SLP hereinafter), let us formulate a general
dynamic programming problem:

Problem 5 (General formulation of a dynamic programming problem)

V (s) = max
c∈C(s)

{u(s, c) + βV (s′)}

s is the state variable, which is pre-determined when the choice is the current period is made. c is
the choice variable. C(s) is the constraint set, which is conditional on the current state s. For our
problem C(s) is characterized by the budget constraint, nonnegativity constraint of consumption,
and nonnegativity constraint for the capital stock. The associated optimal decision rule is denoted
as c = d(s). Here’s a theorem from SLP:

Theorem 1 (SLP 4.6)
If (i) u(s, c) is real-valued, continuous, and bounded, (ii) β ∈ (0, 1), (iii) C(s) is non-empty,
compact-valued, and continuous, there exists a unique value function that solves Problem 5, and
the value function is the limit of the Bellman operator.

I omit the proof but let me mention that the Contraction Mapping Theorem plays a crucial role
in the proof. The nice thing is that the value function is proved to be unique, and it is obtained
by continuously applying the Bellman operator to a guess. The value function iteration, which is a
popular method to solve dynamic problem, method is based on this result.

In addition, there are two theorems which prove useful properties of the value function V (s) and
the associated optimal decision rule d(s) under some additional conditions.
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Theorem 2 (SLP 4.7)
If, in addition to conditions in Theorem 1, (i) u(s, c) is strictly increasing, and (ii) C(s) is monotone,
then V (s), the unique solution to Problem 5 is strictly increasing.

Theorem 3 (SLP 4.8)
If, in addition to conditions in Theorem 1, (i) u(s, c) is strictly concave, and (ii) C(s) is convex, then
V (s), the unique solution to Problem 5 is strictly concave, and the associated d(s) is single-valued
and continuous.

We are not going into the models with shocks, but similar theorems can be applied. Interested
readers are encouraged to read chapter 9 of SLP.

5 Remarks

• It’s always nice to have theorem 3. If we have the continuity of the optimal decision rule
and the strict concavity of the value function, it’s easy to search for the optimal decision.
However, many interesting models do not satisfy the property. Examples are:

1. Models with convex cost of adjustment of capital. An interesting example is the fixed
cost of changing the size of the house. Non-convex adjustment cost is fine.

2. Models with non-trivial tax schedule function.

• Whether theorem 3 holds or not (i.e. the optimal decision rule is continuous or not) affects
the numerical methods that can be applied to solve the problem crucially. If theorem 3 holds,
you can interpolate the optimal decision rule function using some kind of continuous function.
It means that you don’t need to solve the optimal decision rule at a lot of points. On the other
hand, in case theorem 3 does not hold, there is no guarantee that the optimal decision rule
can be approximated by a continuous function. Then the only reasonable way to approximate
to optimal decision rule is to use discretization. It means that it takes a long time to solve
the problem.

• You cannot get nice results for models where agents have hyperbolic or quasi-geometric dis-
counting. Since the problem solved by the agent tomorrow is different from the problem that
the agent today is solving. In other words, the preference is time inconsistent. For a finite
horizon case, you can still solve the model using backward induction, but it’s not trivial to
solve the model with infinite horizon.

• You need some tricks to be able to formulate models without commitment recursively. The
classic example is the time inconsistent policy by ?. Proposed tricks are to include some state
variable which works as record keeping.
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