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What is a Cluster?

A cluster is a bunch of computers connected by a network.

Each computer is called a node or a machine.

Each node could have multiple processors, and multiple cores.

One can construct his own cluster, by connecting bunch of personal
computers with ethernet cables. If you only use components which
are widely available for consumers, it’s called the Beowulf cluster.

A typical cluster consists of:
1 Frontend (Master, Mother) node: Cluster’s interface to the outside

world. You log-in to this node. Not for computation.
2 Compute (Slave) nodes: Specialize in computation. When using MPI,

you don’t deal with them directly.
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An Example: World’s Fastest Cluster as of November 2011

K-computer in Japan.

705024 cores.
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An Example: World’s (Possibly) Slowest Cluster

My Beowulf cluster back in 2007.

2 cores.
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Parallel Software

As the cluster became more and more popular, softwares to utilize the
power of clusters became more and more developed.

Since a cluster consists of a bunch of small computers, in order to use
the potential of the cluster, you have to divide a single program into a
collection of smaller jobs so that different small jobs can be executed
by each core of the cluster simultaneously.

This is the basic idea of parallel programming.

MPI is one of the most widely used parallel softwares.
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What is MPI?

Stands for Message Passing Interface.

Package of procedures that enables cores of a cluster to communicate
(send data each other) easily and efficiently.

Used as an external library to various computer languages (C,
Fortran, R, Python, Java, etc).

A bit tedious to use. In the program, you have to tell explicitly what
tasks are implemented by which processes.

Standard parallel software. Installed to almost any cluster.

Highly portable.

Highly scalable.
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MPI / OpenMP / CUDA

GPU

CPU

Machine1 Machine 2

CUDA

OpenMP

MPI

Core1-1 Core1-2 Core2-1 Core2-2

OpenMP is more restricted than MPI but much easier to use.

Obvious complementarity between MPI and CUDA (if necessary).
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MPI Basics

You only need one code.

The same code runs in all the processes simultaneously.

It’s better to start with a code which perfectly works for a single
processor (but writing the code in a way such that it’s easy to change
to parallel code later).

In the code, you need to explicitly tell which process does which job.
All the processes are assigned an id (an integer which takes value
from 0 to (number of processes-1)) when MPI is used. You can
assign different jobs to different processes by referring to this id.

Remember that distributed-memory environment is the default. You
have to remember what data each process owns. If necessary, you
need to tell the processe to transfer data among them
(message-passing).
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MPI Basics: Example 1

Example 1

if (your name==Iourii)
clean the bathroom

else if (your name==Makoto)
drink beers

end if
watch TV

Iourii cleans the bathroom, and watches TV.

Makoto drinks beers, and watches TV.

Others just watch TV.

Notice everybody uses the same code.
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MPI Basics: Example 2

Example 2

get (your id)
get (total number of processes)
set n=id+1
do

clean n-th floor of McNeil building
n=n+(total number of processes)
if (n>(number of floors in the building)) exit

end do

Suppose the total number of processes is 3 (id=0,1,2), and there are
5 floors in the building.

id=0 cleans 1st floor and 4th floor.

id=1 cleans 2nd floor and 5th floor.

id=2 cleans 3rd floor.

Nakajima (Phila Fed) Intro to MPI Nov 15, 2011 @ UPENN 11 / 47



MPI Basics: Example 3

Example 3

get (your id)
get (total number of processes)
set n=id+1
do

check if there’s anybody on the n-th floor of the building
n=n+(total number of processes)
if (n>(number of floors in the building)) exit

end do
if (id/=0) send what you found to id=0
if (id==0) receive information from other processes
tell whether if there’s anybody in the whole building

All the information obtained during the do-loop are gathered to id=0.

Only id=0 can tell the correct result.
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MPI Basics: Example 4

Example 4

get (your id)
get (total number of processes)
set n=id+1
do

check if there’s anybody on the n-th floor of the building
n=n+(total number of processes)
if (n>(number of floors in the building)) exit

end do
if (id/=0) send information to id=0
if (id==0) receive information from other processes
if (id==0) sends the gathered information to all id/ = 0
tell whether if there’s anybody in the whole building.

All the processe can tell the correct final result.
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Compiling and Linking MPI Code

mpif90 [name of code].f90 -o [name of executable]

Most likely, you will implement the command using terminal.

The command does compiling and linking with the MPI library
simultaneously.

Example: mpif90 foo.f90 -o foo If you implement this, then you
get an executable foo in the same directory as the source code
foo.f90

Can put compiler options.

Obviously, this is for Fortran 90.

For C Language, mpicc is used.

For Fortran 77, mpif77 is used.
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Executing MPI Code

mpirun -np [#1] -machinefile [#2] [name of executable]

The command executes the already-compiled MPI code.

#1: Number of processes started. If you put a number larger than
the number of cores, some cores are used twice (running two of the
same programs separately), which is an inefficient thing to do.

#2: The option -machinefile [#2] is used only when you want to
specify the nodes/cores that you want to use. #2 is the name of the
file which contains the list of the names of nodes (and number of
cores for each node) to be used. If omitted, the default list (usually
contains all the nodes and all the cores) is used.

Example: mpirun -np 8 ./foo If you implement this, the first 8
cores in the default list of machines run the same executable foo in
the current directory simultaneously.
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At the Beginning of MPI code...

include ’mpif.h’

Used to include header containing variables and procedures related to
MPI Library. You have to start your program with this.

Now we start 6 fundamental subroutines of MPI. All the subroutines can
be used by call, after including ’mpif.h’.
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6 Basic Commands of MPI [1]

MPI INIT(ierror)

Used to initialize MPI environment.

Put it at the beginning of your code after variable declaration without
thinking.

ierror is an integer which returns the error code if an error occurs
(usually there’s no error when implementing this command).

For C version, there is no ierror.
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6 Basic Commands of MPI [2]

MPI FINALIZE(ierror)

Used to finalize MPI environment.

Put it at the end of your code without thinking.

Again, ierror is an integer and no ierror for C version.
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6 Basic Commands of MPI [3]

MPI COMM SIZE(MPI COMM WORLD,nproc,ierror)

Used to obtain the number of processes (nproc). Obviously, nproc
must be declared as an integer.

Usually this subroutine is called right after MPI INIT.

MPI COMM WORLD is declared in mpif.h. It is called a communicator.
A communicator defines a group of processes. MPI COMM WORLD is the
default communicator, which contains all the processe used. You
could define different communicator, but it’s an advanced stuff.

nproc that is returned corresponds to the communicator referred. In
the case above, since the default communicator is used, total number
of processes used in the program is returned.

Again, ierror is an integer and no ierror for C version.
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6 Basic Commands of MPI [4]

MPI COMM RANK(MPI COMM WORLD,id,ierror)

Used to obtain the unique id of each process (id). Obviously, id
must be declared as an integer.

Usually this subroutine is called right after MPI INIT.

Notice that the returned value id is different for each process. id
takes the value from 0 to nproc-1. This is crucial to make each
process do different jobs.

MPI COMM WORLD is again a communicator.

Again, ierror is an integer and no ierror for C version.
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6 Basic Commands of MPI [5]

MPI SEND(buf,count,type,dest,tag,comm,ierror)

Used to send data to the process dest.

buf indicates the address of the data that are sent. In case sending a
scalar, the scalar itself enters as buf. In case sending a 1-dimensional
array, buf should be the first element of the array, like x(1).

count is an integer indicating the length of the data sent.

type indicates the type of data that are sent. MPI INTEGER and
MPI DOUBLE PRECISION are often used. There are many other.

dest is an integer and indicates id of the destination of the data.

tag is an integer and is used to refer to the current message passing
operation. Can be any integer but should be unique.

comm is a communicator. We use MPI COMM WORLD.

ierror is an integer and returns the error code if there is one.
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6 Basic Commands of MPI [6]

MPI RECV(buf,count,type,root,

tag,comm,STATUS(MPI STATUS SIZE),ierror)

Used to receive data from the process root.

buf, count, type, tag, comm, ierror are same as for MPI SEND.

MPI RECV is linked with a particular MPI SEND using tag.

root is an integer and indicates the source of the data received. id
number, which takes the value from 0 to nproc-1, is used.

STATUS(MPI STATUS SIZE) is an integer array which indicates the
status of the operation. The variable status must be declared.
MPI STATUS SIZE is defined in mpif.h.
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Remarks on MPI SEND and MPI RECV

Both MPI SEND and MPI SEND commands don’t end until the data are
received by the destination (whether the data are received or not is
automatically checked). In this sense, this type of sending and
receiving operation is called blocking operation.

As you can imagine, there is a non-blocking send operation as well.
The commands are MPI ISEND and MPI IRECV(”I” means
immediate). It potentially allows the code to implement other
operations while the data are sent and received. However, the
receiving side is a bit tricky, as the receiving operation ends before all
the data are received. Therefore, non-blocking operations are not
default.
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Sample Program: “Hello, World!”hello_world.f90     Page 1    1 program hello_world    2     3   implicit none    4     5   include 'mpif.h'    6     7   integer:: ierror, id, nproc    8     9   call mpi_init(ierror)   10    11   call mpi_comm_rank(mpi_comm_world, id, ierror)   12    13   call mpi_comm_size(mpi_comm_world, nproc, ierror)   14    15   print *, 'hello, world! i am node ',id   16    17   if (id==0) then   18     print *,'and I am the master!'   19   end if   20    21   call mpi_finalize(ierror)   22    23 end program hello_world
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Introduction to Collective Communication

MPI SEND and MPI RECV only support a message passing from one
process to another. In this sense, these commands are called
one-to-one communication commands.

In many other occasions, we want to let one process to send data to
all the other processes, or gather data from all the processes to one
process. These operations are called collective communications.

In theory, collective communication can be achieved by a combination
of one-to-one communications, but using collective communications
make the code simpler and maybe faster.

MPI has a variety of collective communication commands. We will
see the most useful ones below.
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Collective Communication Commands [1]

MPI BCAST(buf,count,type,root,comm,ierror)

Broadcast data defined by [buf,count,type] from root to all the
processes in comm

comm, ierror are same as before.
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Collective Communication Commands [2]

MPI REDUCE(sendbuf,recvbuf,count,type, op,root,comm,ierror)

Summarize data [sendbuf,count,type] of all the processes in
comm, create [recvbuf,count,type], and store it at root.

comm, ierror are same as before.

sendbuf refers to the address of the data stored in each process and
which are summarized.

recvbuf refers to the address of the summarized data stored in root.

There are various options for op. Examples are: MPI SUM sums up the
data across all the processes. MPI PROD multiplies all the data.
MPI MAX returns the maximum. MPI MIM returns the minimum.

When [sendbuf,count,type] is an array, the operation op is
applied to each element of array.
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Collective Communication Commands [3]

MPI GATHER(sendbuf,sendcount,sendtype,

recvbuf,recvcount,recvtype,root,comm,ierror)

Combine data [sendbuf,sendcount,sendtype] of all the processes
in comm, create [recvbuf,nproc*recvcount,recvtype], and store
it at root.

comm, ierror are same as before.

Typically sendcount=recvcount, sendtype=recvtype, and the length of
the array recvbuf is nproc*recvcount.
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Collective Communication Commands [4]

MPI SCATTER(sendbuf,sendcount,sendtype,

recvbuf,recvcount,recvtype,root,comm,ierror)

Scatter data [sendbuf,nproc*sendcount,sendtype] held
originally by root to all the processes in comm, as
[recvbuf,nproc*recvcount,recvtype].

In a sense, the opposite of MPI GATHER.

comm, ierror are same as before.

Typically sendcount=recvcount, sendtype=recvtype, and the length of
the array sendbuf is nproc*sendcount.
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Collective Communication Commands [5]

MPI ALLREDUCE(sendbuf,recvbuf,count,type, op,comm,ierror)

MPI REDUCE plus MPI BCAST.

The result of MPI REDUCE operation is shared by all the processes.

Notice there is no root.

MPI ALLGATHER(sendbuf,sendcount,sendtype,

recvbuf,recvcount,recvtype,comm,ierror)

MPI GATHER plus MPI BCAST.

The result of MPI GATHER operation is shared by all the processes.

Notice there is no root.
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Other Useful Commands [1]

call MPI ABORT(comm,ierror)

Used to kill the code running on all the processes included in the
communicator comm.

The default communicator is MPI COMM WORLD.

You only need one process to call this subroutine to abort the entire
program.

ierror is same as before.

call MPI BARRIER(comm,ierror)

All the processes included in comm wait until all the processes call this
subroutine

Therefore, used to synchronize the timing.

Useful for debugging.

ierror is same as before.
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Other Useful Commands [2]

MPI WTIME()

This is a function.

Returns current time measured by the time passed since some
arbitrary point of time in the past.

Only the difference between two points of time matter, because the
starting point is arbitrary.

No argument necessary.

MPI WTICK()

This is a function.

Returns the number of seconds which is equivalent to one unit in
MPI WTIME

No argument necessary.
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Example: Aiyagari (1994)

Let’s do some more fun stuff:

1 Show an example of using MPI with Fortran 90.

2 Use a standard heterogeneous agent model of Aiyagari (1994) as an
example.

3 Start with the serial (non-parallel) version of the code, and show how
the code is parallelized.

4 Show how much the code runs faster if parallelized.

Nakajima (Phila Fed) Intro to MPI Nov 15, 2011 @ UPENN 33 / 47



The Model

Standard incomplete market economy with mass of atomless
infinitely-lived agents.

Individual earnings shock follows a Markov chain.

An agent receives stochastic earnings each period, and chooses how
much to save and consume.

No labor-leisure choice.

Can save only in the form of physical capital. Ad-hoc borrowing
constraint (set at zero). No state-contingent security allowed to be
traded.

Representative firm has an access to CRS technology.

Focus on the steady state where interest rate and wage are constant
over time.
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Solution Method: Discretization

Asset space is discretized into na(= 2000) grid points.

Productivity shock can take one of the 7 values (ne = 7)

Each agent is characterized by (e, a), where:

e ∈ {1, 2, 3, 4, 5, 6, 7}
a ∈ {1, 2, 3, ..., 2000}

Therefore, total number of individual states is ni=na*ne=14000.

Restrict the choice to be on the asset grids. Therefore, the
optimization problem for an agent of each type is just choosing the
grid point a′ ∈ {1, 2, 3, ..., 2000} associated with the highest value.
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Solution Method: Main Loop

1 Beginning of Loop 0 Guess K
Y . This gives the guess for r and w

(remember CRS production technology).

2 Loop 1 Given the prices, using the value function iteration, find the
optimal value function V (e, a) and associated optimal decision rule
a′ = ga(e, a).

3 Loop 2 Using ga(e, a) and the Markov transition matrix p(e, e ′),
compute the ergodic distribution of agent types.

4 Using the ergodic distribution, compute the aggregate labor supply
and the aggregate capital stock.

5 Compute K
Y associated with the computed aggregate capital stock

and aggregate labor supply.

6 End of Loop 0 Compare the guess of K
Y and newly obtained K

Y . If not

close enough, update the guess of K
Y and go back to the top.
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Solution Method: Inside Loop 1

1 Beginning of Loop 1 Take r and w as given. Guess the value function
V0(e, a).

2 Given the prices, and V0(e, a), update the value function using the
Bellman operator. Notice that the optimization problem for each type
(e, a) is just choosing the optimal grid point a′ out of 2000 grid
points.

3 Call the updated value function V1(e, a).

4 End of Loop 1 Compare V0(e, a) and V1(e, a). If not close enough,
set V0 = V1 and go back to the top.
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Solution Method: Inside Loop 2

1 Beginning of Loop 2 Take the optimal decision rule ga(e, a) as given.
Guess the type distribution of agents d0(e, a).

2 Using ga(e, a) and the Markov transition matrix p(e, e ′), update the
distribution and denote the new distribution as d1(e, a).

3 End of Loop 2 Compare d0(e, a) and d1(e, a). If not close enough, set
d0 = d1 and go back to the top.
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Parallelization: Basic Idea

Suppose we use nproc = 10 processes: id = 0, 1, ..., 9

Remember there are ni = na ∗ ne = 14000 types.

We assign 1400(= 14000/10) states for each process.

Each process updates value only for 1400 types.

Each process updates distribution only for 1400 types.
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Parallelization: Preparation

Function iafun: converts i to a

Function iefun: converts i to e

Variable itop = ni/nproc ∗ id + 1

Variable iend = ni/nproc ∗ (id + 1)

Each process is in charge of i = itop, itop + 1, ..., iend

Confirm that the entire type space is covered.

If ni is not a multiple of nproc , a bit tricky but the idea is the same.
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Parallelization: Pseudo Code [1]

Initialization Block

1 (Start of the code)

2 include ’mpif.h’ (→ link mpi library)

3 (Variable declaration)

4 call MPI INIT (→ initialization)

5 call MPI COMM RANK (→ id assigned)

6 call MPI COMM SIZE (→ nproc set)

7 if (id==0) open ’output file’

8 (set iafun, iefun, itop, iend)

Be careful not to allow multiple processes to access to the same file
simultaneously.
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Parallelization: Pseudo Code [2]

Loop 0 (main loop for prices)

1 All processes compute k0 (initial guess for K
Y )

2 Beginning of loop 0

3 (Loop 1: obtain optimal value function)

4 (Loop 2: obtain ergodic distribution)

5 All processes compute k1 (updated K
Y )

6 If k0 and k1 are close, get out of the loop

7 Update k0
8 End of loop 0

9 call MPI FINALIZE

Make sure that all processes have the same prices at any point of
time!
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Parallelization: Pseudo Code [3]

Loop 1 (value function iteration)

1 All processes set the initial guess V0

2 Beginning of loop 1

3 Each process computes updated value V1 for i = itop, ..., iend

4 call MPI ALLGATHER (→ sharing updated value V1)

5 If V0 and V1 are close, get out of the loop

6 Update V0 = V1

7 End of loop 1

Make sure that V0 is shared among all processes all the time!

Notice that each process id has optimal decision rule only for
i = itop, ..., iend .
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Parallelization: Pseudo Code [4]

Loop 2 (Ergodic Distribution)

1 All processes set the initial guess d0
2 Beginning of loop 2

3 Each process updates the distribution and obtain d1 only for agents of
type i = itop, ..., iend

4 call MPI ALLREDUCE (→ sum up d1 across all processes)

5 If d0 and d1 are close, get out of the loop

6 Update d0 = d1
7 End of loop 2

Make sure that V0 is shared among all processes all the time!

Notice that each process id has optimal decision rule only for
i = itop, ..., iend .
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Benchmark: Overview

Use my susquehanna cluster for assessing performance of the parallel
code.

susquehanna consists of 7 nodes (1 frontend + 6 compute nodes).

Each node is equipped with Athlon2600 (1.8Ghz)... Machine from the
20th century.

Gigabit ethernet network.

Compiled with Intel Compiler For Linux Version 7. only −O3 option
is used.

First of all, I ran the sequential code using (of course) one node.
Then ran the parallel code with 2-6 nodes.

I also ran the parallel code using In-Koo Cho’s 18 nodes cluster (9
dual-Opteron) at UIUC.
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Benchmark: Result: Figure
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Benchmark: Result: Table

Number of Nodes Time (Minutes:Seconds) (Seconds) Normalized

1 (Sequential code) 29:14 1754 1.00
2 (Susquehanna) 15:39 939 0.54
3 (Susquehanna) 11:14 674 0.38
4 (Susquehanna) 8:49 529 0.30
5 (Susquehanna) 7:43 463 0.26
6 (Susquehanna) 6:32 392 0.22
18 (Cho) 4:57 297 0.17

Pretty large gain from parallelization.

The marginal gain is diminishing, as the time spent for message
passing gets larger and larger.
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